|
8:30
|
Registrierung & Ausstellung
|
|
|
|
|
9:15
|
Begrüßung (DE)
09:15–09:25
Udo Gohier, Regional Director Central EMEA
MathWorks
|
Udo Gohier, Regional Director Central EMEA
MathWorks
|
|
|
|
9:25
|
Keynote: Embedded Intelligence: The Future of AI in Engineering Design (EN)
Artificial intelligence, especially generative AI, is changing engineering design. It handles routine tasks and helps engineers be more creative in three key ways:
- Accelerating the engineering design loop by providing faster, data-driven solutions.
- Mixing human ideas with AI insights, changing the role of designers.
- Improving engineering design tools, making it easier to turn creative concepts into accurate, ready-to-build solutions.
See how these advancements help engineers move beyond traditional limits and effectively bridge imagination with practical solutions.
Richard Rovner, Vice President, Marketing
MathWorks
Richard Rovner is vice president of marketing for MathWorks. He leads the worldwide marketing organization of 400+ people responsible for strategic planning; product and technology strategy; industry, higher education, and field marketing; digital marketing and creative services; corporate communications; and marketing planning and operations. He spent the first part of his career developing applications in computer vision and image processing, machine learning and artificial intelligence, simulation, and statistical analysis. He has a B.S. in applied mathematics from Carnegie Mellon University and an M.S. in computer science from George Washington University.
09:25–09:45
Richard Rovner, Vice President, Marketing
MathWorks
|
Richard Rovner, Vice President, Marketing
MathWorks
|
|
|
|
9:45
|
Keynote: Software Transformation at TRATON (EN)
In the coming years, Scania, MAN, Volkswagen Truck & Bus, and International (former Navistar) will increasingly rely on the TRATON Modular System. This system enables cross-brand development, facilitating seamless integration of vehicle components through standardized interfaces. TRATON Group aims to make software a key enabler to add value for its customers. Shifting mindsets and creating a software-first culture are essential to develop the next-generation TRATON Modular System. This presentation highlights TRATON's strategy for achieving a significant step change in developing software at scale.
Maria Nygren, Senior Manager for Information Architecture and Toolchain for Embedded
TRATON Group
Maria Nygren is the senior manager for information architecture and toolchain for embedded at TRATON Group, and she is responsible for TRATON’s Software Factory Runway. She manages systems engineering tooling and development of a comprehensive toolchain for TRATON’s R&D organization, handling both new and legacy toolchains for software-defined vehicles. This year, Maria has played a key role in merging departments from Scania, MAN, International, and Volkswagen Truck & Bus into a global R&D department with the purpose of commonly developing for the brands in the TRATON Group. Since joining Scania in 2001, Maria has worked in digital services, connectivity products, production tooling, and repair & maintenance tooling. She holds an M.Sc. in geographical information technologies from Luleå University of Technology.
09:45–10:05
Maria Nygren, Senior Manager for Information Architecture and Toolchain for Embedded
TRATON Group
|
Maria Nygren, Senior Manager for Information Architecture and Toolchain for Embedded
TRATON Group
|
|
|
|
10:05
|
Keynote: Operating at the Borderline Between Software and Electrical Engineering (EN)
This keynote explores the evolving interface between software and electrical engineering in the HVDC and FACTS domain, where real-time control, power electronics, and digital intelligence converge. It raises the critical question: are we a hardware-driven or a software-driven business—and what does that mean for how we innovate, structure teams, and deliver value? Attendees will gain insight into how this balance shapes software architecture, development practices, and business strategy.
Dr. Maximilian Dürre, Vice President, Grid Solution Control & Protection
Siemens Energy
Dr. Maximilian Dürre is vice president of control and protection grid solutions at Siemens Energy. With more than 15 years of leadership experience across energy systems and management consulting, he brings deep expertise in digital transformation and strategic operations. Dr. Dürre holds a doctorate in mathematics from Ludwig-Maximilians-Universität München.
10:05–10:25
Dr. Maximilian Dürre, Vice President, Grid Solution Control & Protection
Siemens Energy
|
Dr. Maximilian Dürre, Vice President, Grid Solution Control & Protection
Siemens Energy
|
|
|
|
10:25
|
Keynote: AI and Machine Learning at the Intelligent Edge (EN)
Automobiles are moving from static electrical and mechanical machines to intelligent and connected devices that provide enhanced safety, convenience, and comfort for their users. Powerful hardware and the latest AI and machine learning software help deliver not only ADAS and autonomous driving features, but also enhanced cyber security and safety features, efficient power management, predictive maintenance, and other capabilities to car users. This presentation will highlight the growing set of AI and machine learning–driven capabilities in the car and what it takes to deliver automotive quality products to customers.
Daniel Weyl, Senior Vice President, Software R&D
NXP Semiconductors Germany GmbH
As senior vice president, Daniel Weyl is leading the global software R&D in the automotive group at NXP Semiconductors. His team develops all kinds of driver- and application-specific embedded and production level software in areas such as vehicle connectivity and networking systems, powertrain, general purpose and integrated solutions, security and safety, power management ICS, secure car access, ADAS, and radar. The software products in this portfolio range widely, including basic embedded firmware, low-level drivers, AUTOSAR, safety and security libraries, tools, operating systems, real-time virtualization and isolation, HW accelerator enablement, AI enablement, ethernet and communication stacks, and more.
10:25–10:45
Daniel Weyl, Senior Vice President, Software R&D
NXP Semiconductors Germany GmbH
|
Daniel Weyl, Senior Vice President, Software R&D
NXP Semiconductors Germany GmbH
|
|
|
|
10:45
|
Pause, Networking & Ausstellung
|
|
|
|
|
11:30
|
Architecture, Design, and Test for SOA and Adaptive AUTOSAR Applications (EN)
Schaeffler executed a pilot project to explore existing and newly introduced tools for developing a scalable, modular software-defined vehicle (SDV) architecture. The initiative aimed to enhance software portability and reusability between projects, even across different software technologies. This presentation provides an overview of our extended AUTOSAR Adaptive workflow, which was one of the results of this project.
MathWorks describes a round-trip workflow for both AUTOSAR Classic and Adaptive developments, enabling the use of both bottom-up and top-down development processes. In our pilot project, we implemented a top-down development process with iterative loops. This typically begins with high-level software architecture modeling, followed by ECU deployment, which determines the appropriate software technology.
While the AUTOSAR Classic development process is well-established, a key challenge lies in defining a software architecture that ensures reusability and portability across platforms.
Achieving this requires defining transition points between development processes to enable seamless import/export of reusable artifacts. Extending the AUTOSAR Classic round-trip workflow with these transition points allows for greater efficiency and cost savings.
Zoltan Glozik
Schaeffler Technologies AG & Co. KG
11:30–12:00
Zoltan Glozik
Schaeffler Technologies AG & Co. KG
|
Zoltan Glozik
Schaeffler Technologies AG & Co. KG
|
|
|
Project Line Engineering: Bridging Between Product and Solution Business (EN)
In times where complexity and customization define competitive advantage, the integration of model-based systems engineering (MBSE) into project engineering is transforming how companies bridge the gap between standardized products and tailored solutions. This presentation explores the concept of project line engineering—an approach that leverages Simulink® and MBSE methodologies to unify product-centric and solution-oriented development paradigms.
Jens Dietrich
Siemens Energy
11:30–12:00
Jens Dietrich
Siemens Energy
|
Jens Dietrich
Siemens Energy
|
|
|
Crealizer: An Open Software Platform Enabling ABB Drives Customization with Simulink (EN)
Crealizer™ is an open software platform that enhances the functionality of ABB drives by offering virtually unlimited customization options, enabling users to tailor the device precisely to their specific requirements. By using Crealizer and Simulink®, we’ve built an application that effectively eliminates lateral vibrations of a large electrical machine by applying a counteracting torque in real time.
11:30–12:00
Dr. Sjoerd Bosga
ABB
Bartłomiej Flak
ABB
- Industrial Automation and Machinery
|
Dr. Sjoerd Bosga
ABB
Bartłomiej Flak
ABB
|
|
- Industrial Automation and Machinery
|
Developing Next-Generation MRI Reconstruction Techniques in MATLAB (EN)
Magnetic resonance imaging (MRI) is a cornerstone of diagnostic healthcare and clinical research, providing high-quality structural and functional images without ionizing radiation. Central to MRI is the reconstruction process, which is fundamentally an inverse mathematical problem. In essence, the measured k-space data is modeled as data = Encode × image, meaning that recovering the image involves applying the inverse transformation image = Encode⁻¹ × data.
Historically, MRI has relied on fast Fourier transforms and iterative algorithms because direct inversion was computationally infeasible—the encoding matrix for even a modest 128 × 128 image can reach dimensions of 16,384 × 16,384 (consuming around 2.1 GB in single precision). Today, modern computer hardware and MATLAB® make direct pseudoinversion feasible. By using optimized linear algebra routines in MATLAB on multicore CPUs and GPUs with ample memory, we compute the pseudoinverse of the encoding matrix and perform image reconstruction in a single matrix-vector multiplication step. This approach is highly flexible, and advanced encoding physics such as parallel imaging, off-resonance, gradient distortions, and motion can all be integrated into the encoding matrix and processed within a unified framework. Moreover, by explicitly computing the pseudoinverse of the encoding matrix, we can extract interpretable metrics such as point-spread function and noise-propagation maps that offer additional insights into the encoding and reconstruction process.
We further extend this algebraic framework toward AI by integrating implicit neural image representations and applying deep learning techniques for tasks like denoising and artifact reduction. These extensions merge the rigor of classical linear algebra with modern AI, further enhancing MRI reconstruction performance.
Florian Wiesinger, PhD
GE HealthCare
11:30–12:00
Florian Wiesinger, PhD
GE HealthCare
|
Florian Wiesinger, PhD
GE HealthCare
|
|
|
Resilient mmWave Communication with Non-Reconfigurable Reflectors (EN)
Millimeter wave (mmWave) communication offers efficient, high-bandwidth spectrum utilization but suffers from low robustness against blockages and shadowing caused by mobility. An intelligent reconfigurable surfaces (IRS) can mitigate these issues; however, its complexity makes practical deployment challenging. In this presentation, hear about non-reconfigurable reflecting surfaces (NRRSs)—a practical, lower-complexity alternative to IRSs that provides fixed-signal reflections to enhance link stability. Using an mmWave testbed, this session demonstrates that even limited deployment of an NRRS can significantly improve communication reliability. Measurements and analyses conducted with WLAN Toolbox™ further reveal that NRRSs introduce strong frequency selectivity, making the use of advanced physical layers such as IEEE 802.11 essential.
Dr. Anatolij Zubow
Technische Universität Berlin
11:30–12:00
Dr. Anatolij Zubow
Technische Universität Berlin
|
Dr. Anatolij Zubow
Technische Universität Berlin
|
|
|
Toward Automated Generation of Test Equipment Software: An Interface-Centric Toolchain (EN)
In this presentation, learn about an automated process for generating complete test equipment configuration software with minimal manual intervention. The proposed toolchain integrates a model-based electric interface control document (eICD) management database with MATLAB® and Simulink® scripting capabilities to produce the complete testbench run-time execution software by fetching data from the eICD management database.
The data is used to collect the required design artifacts such as device simulations, control panels, and custom code, and to automatically generate the bus definitions, transport layer handling, in/output mappings and session files. Systematically ensuring interface compliance between Simulink models and their prescribed eICD specifications, the process generates configuration files in both human- and machine-readable formats, automates transport layer encoding/decoding code generation, and compiles simulation models for target environments.
This approach reduces manual repetitive work by approximately 60%, with the potential to exceed 70% when coupled with MATLAB and Simulink, while significantly lowering the risk of interface and configuration errors. The workflow is demonstrated on the iron bird test rig for a SAIL III–compliant 2.7-ton electric vertical takeoff and landing full-mass demonstrator
Dr. Valentin Marvakov
ERC System
11:30–12:00
Dr. Valentin Marvakov
ERC System
|
Dr. Valentin Marvakov
ERC System
|
|
|
|
12:00
|
Implicit Testing: Rethinking Embedded Software Validation (EN)
Traditionally, embedded software in automotive control units is validated using an explicit testing approach; requirements are manually translated into test cases, often resulting in high maintenance effort and limited effectiveness. However, in practice, explicit testing has shown major drawbacks. It’s hard to scale, rarely consistent, and often creates friction between development and testing teams.
With implicit testing, we introduce a paradigm shift: instead of validating each requirement in isolation, the system operates within realistic, automatically generated scenarios that are evaluated against high-level validation criteria. This creates a system-level, test-driven run-time environment where bugs are revealed without needing to be explicitly defined.
The testing setup is split into three independent components:
- Plant models developed in Simulink® and Simscape™ simulate realistic physical and hard-ware behavior.
- Test scenarios representing customer use cases and fault conditions, which are generated automatically using simple keywords or recorded MF4 data ingested via Vehicle Network Toolbox™.
- Validation criteria implemented in MATLAB® to assess overall system behavior based on high-level requirements, independent of software implementation details.
We’ve successfully implemented this approach with these outcomes:
- Drastically reduced test maintenance effort with significant quality improvements.
- Early detection of unexpected bugs through system-level testing.
- Improved collaboration with clear responsibilities and traceable root causes.
- Scalable test coverage through reusable scenarios and criteria.
Implicit testing offers an efficient and scalable approach to validating complex embedded systems. This presentation outlines the methodology, application, and impact in our projects.
Milan Lechner
AGSOTEC GmbH
Dr. Emmanuel Arras
BMW AG
12:00–12:30
Milan Lechner
AGSOTEC GmbH
Dr. Emmanuel Arras
BMW AG
|
Milan Lechner
AGSOTEC GmbH
Dr. Emmanuel Arras
BMW AG
|
|
|
Shift-Left im Systems Engineering: Von statischen Diagrammen zu simulierbaren Architekturen für eine effiziente Entwicklung von E-Antriebssystemen (DE)
Im Bereich des System Engineering für komplexe Produktentwicklungen ist der Übergang von statischen Diagrammen zu dynamischen, simulierbaren Architekturen entscheidend für ein effizientes und zuverlässiges Systemdesign. Diese Präsentation stellt einen Shift-Left-Ansatz vor, bei dem anstelle traditioneller statischer Darstellungen simulierbare Systemarchitekturen verwendet werden. Dies ermöglicht eine frühzeitige Validierung von Systemkonzepten, die schnelle Erkennung von Designfehlern und eine kontinuierliche Verifizierung während der gesamten Entwicklung. Durch die Simulation der Systemarchitektur führt die frühzeitige Fehlererkennung zu einer erhöhten Ausgereiftheit der Anforderungen und fundierteren Design-Entscheidungen, was zu Kosten- und Zeitersparnissen sowie einer verbesserten Systemqualität führt. Die Integration von CI verbessert diesen Prozess zusätzlich, indem sie komplexe Architekturänderungen durch automatisierte Regressionstests unterstützt und so sicherstellt, dass Fehler so früh wie möglich erkannt werden.
Dr. Matthias Braband
eMoveUs GmbH
12:00–12:30
Dr. Matthias Braband
eMoveUs GmbH
|
Dr. Matthias Braband
eMoveUs GmbH
|
|
|
AI-Powered BMS and Cloud Intelligence: Advancing Algorithm Development with FEV’s GenAI Hub and MATLAB and Simulink (EN)
The integration of AI into battery management systems (BMS) is revolutionizing the electric vehicle industry. Using large language models (LLMs), such as GPT, and MATLAB® and Simulink® allows for more efficient BMS algorithm development. LLMs facilitate advanced natural language processing and rapid analysis of large datasets, which streamlines algorithm creation, implementation, and testing.
MATLAB and Simulink provide a powerful platform for modeling battery behavior, simulating scenarios, and optimizing control strategies, which accelerates the transition from concept to deployment. Central to combining AI technologies with AMTLAB and Simulink is FEV’s GenAI Hub, which aggregates high-quality data from multiple sources and fosters collaboration among experts. This step allows the development of advanced BMS algorithms, enhancing battery performance, safety, and reliability.
With AI-driven insights and predictive modeling, FEV’s solutions enable accurate estimation of battery health, state-of-charge, and state-of-health—all critical for maintaining EV performance and longevity. These advancements not only benefit individual EV users but also support fleet management and energy storage applications. By maximizing the use of residual battery capacity, FEV’s AI-powered BMS contributes to sustainable energy solutions by reducing environmental impact and total cost of ownership.
The integration of advanced AI technologies into BMS development is a key driver for the future of mobility, paving the way for greener and smarter transportation systems.
12:00–12:30
|
Giovanni Vagnoni
FEV
|
|
|
Electrocardiography in 3D Vector Space: MATLAB Analysis as a Certified Medical Device (EN)
Cardiovascular diagnostics rely on spatial information for accurate assessment. This session presents a certified medical software platform for the analysis of vectorelectrocardiography signals in a 3D vector space. Developed entirely in MATLAB®, this tool enables clinicians and researchers to analyze, visualize, and interpret cardiac electrical activity.
Attendees will learn how MATLAB was used not only for signal processing and visualization, but also for verification, validation, and certification of a real-world medical product. This includes challenges in aligning development in MATLAB with medical device regulations such as MDR, and successful deployment in a clinical environment.
This project demonstrates how MATLAB and Simulink® can support the full product life cycle—from prototype to certified solution—and showcases a compelling use case for MATLAB in regulated medical software.
Thomas Fechner
Cardisio GmbH
12:00–12:30
Thomas Fechner
Cardisio GmbH
|
Thomas Fechner
Cardisio GmbH
|
|
|
Accelerate Radar Design by Integrating MATLAB with Texas Instruments mmWave Boards and Tools (EN)
The efficient development and prototyping of millimeter-wave (mmWave) radar systems requires workflows that effectively integrate both hardware and software components. This paper introduces a comprehensive workflow that combines advanced mmWave radar modules from Texas Instruments (TI) with the robust capabilities of MATLAB®, thereby streamlining the radar design process and facilitating a unified design cycle. The workflow utilizes an efficient API in MATLAB, optimized for interacting with the mmWave radars, to enhance integration and performance. We detail an end-to-end workflow that illustrates the configuration and acquisition of radar detections and measurements from TI mmWave evaluation modules (EVMs) into MATLAB, where we leverage powerful signal processing capabilities for sensing and detection applications. The efficacy of the proposed workflow is demonstrated through a case study focused on tracking individuals within indoor environments.
Matthieu Chevrier
Texas Instruments
12:00–12:30
Matthieu Chevrier
Texas Instruments
|
Matthieu Chevrier
Texas Instruments
|
|
|
Rethinking Memory Safety: The Quiet Power of Model-Based Design (EN)
Memory safety has become a defining challenge in today’s software landscape—critical not only for system reliability, but also for functional safety and cybersecurity. It is often addressed through memory-safe programming languages and run-time checks. But there is a quieter, more powerful path already at our fingertips: Model-Based Design, combined with advanced static analysis, can achieve memory safety almost automatically.
In this talk, we highlight how the structured nature of auto-generated code from Model-Based Design tools such as Simulink® and Embedded Coder® creates an ideal foundation for static analysis. We show how you can leverage this foundation to verify memory safety properties at scale, and exhaustively. The absence of common memory errors such as buffer overflows or use-after-free can be established not through simulation or testing, but with mathematical certainty.
This combined approach to memory safety delivers a level of predictability and design-time assurance that surpasses what many run-time strategies can offer. Crucially, it does so without changing programming languages, without introducing run-time overhead, and without disrupting existing workflows.
This is not just a technical win—it’s a strategic advantage. For product leaders, architects, and engineering managers, it demonstrates how Model-Based Design can serve as a platform not only for productivity and traceability, but also for deep system safety. Memory safety, long considered a hard problem, becomes something we can approach with confidence—almost as a natural consequence of the way we already build.
Dr. Martin Becker
MathWorks
12:00–12:30
Dr. Martin Becker
MathWorks
|
Dr. Martin Becker
MathWorks
|
|
|
|
12:30
|
Mittagessen, Networking & Ausstellung
|
|
|
|
|
14:00
|
Model-Based Design for Intelligent Field Devices in Industrial Automation (EN)
In the current landscape of MATLAB® and Simulink®, no functionality exists to exploit the full capabilities of multiprocessor system on chip (MPSoC) hardware in one tool like for the AMD Zynq™ Ultrascale+™ MPSoCs. This hardware can currently be controlled with generated code by MATLAB and Simulink for Arm® Cortex®-A53 processors and the FPGA. However, the user is limited to using Linux® as the operating system on the Cortex-A53 processors, and the use of Arm® Cortex®-R5 processors is not supported.
With precise consideration of customer requirements, Sokratel developed a commercial Simulink Target (SIRIUS OS Target) as an all-in-one solution, allowing simultaneous usage of all processors and the FPGA. Real-time capability is made possible by using FreeRTOS™ as the operating system on the processors. Only one Cortex-A53 core uses Linux for management tasks. The SIRIUS OS Target allows users to develop in a familiar Simulink environment and to pursue a model-based design approach utilizing the full potential of their hardware with one click.
In this demonstration, we present an application-oriented example of a motor controller using the Kria™ KD240 Drives Starter Kit. The motor is controlled via a customized IP running on the FPGA that is generated with MATLAB and Simulink. The SIRIUS OS Target is integrated in the model and provides additional features such as data exchange with applications for monitoring and controlling on different cores. A data logger for external data analysis, industrial communication to external components, and a Web HMI to monitor and change parameters during runtime are all easy to integrate because they are already included in the SIRIUS OS platform.
14:00–14:30
Tim Krause
Sokratel GmbH
- Industrial Automation and Machinery
|
Tim Krause
Sokratel GmbH
|
|
- Industrial Automation and Machinery
|
Model-Based Development of Motorcycle Systems and Software Using a Digital Twin (EN)
Hero Tech Center Germany showcases an integrated development approach combining model-based systems engineering (MBSE) and model-based software development (MBSD) using a digital vehicle twin for electric powertrain development. This model-centric workflow connects system-level requirements, architecture, behavior modeling, and verification in a single, traceable process.
Traditional motorcycle testing is limited by high costs, long iteration cycles, and late-stage fault detection. Physical prototypes are hard to scale, incomplete early on, and pose risks when validating safety-critical functions. In contrast, our digital twin—a high-fidelity, executable model—enables early, repeatable validation in virtual environments.
Using MATLAB® and Simulink®, we integrate system requirements with functional and behavioral models. These requirements are linked and verified across development stages, which improves traceability and ensures consistency from architecture to implementation. Continuous verification through model-, software-, and hardware-in-the-loop testing allows early fault detection and reduces reliance on physical builds.
The digital twin supports scalable testing of control algorithms, system integration, and safety features before hardware is available. Requirements act as both design inputs and validation criteria, enabling automated compliance checks and improved development speed.
This use case in electric powertrain illustrates how a requirements-driven, model-based workflow accelerates development, enhances quality, and ensures robust, scalable design. It also addresses toolchain alignment and integration challenges across MBSE and MBSD environments, boosting agility and system reliability.
Benjamin Byrnes, Damian Delic, and John Northwood
HERO Tech Center Germany Gmbh
14:00–14:30
Benjamin Byrnes, Damian Delic, and John Northwood
HERO Tech Center Germany Gmbh
|
Benjamin Byrnes, Damian Delic, and John Northwood
HERO Tech Center Germany Gmbh
|
|
|
Fehlermodellierung in Simscape zur Entwicklung robuster Systeme (DE)
Fehlermodellierung ist eine Schlüsselmethode bei der Entwicklung sicherer und zuverlässiger Systeme. Das Entwickeln von Logik für die Erzeugung von verschiedenen Fehlertypen und das parallele Verwalten von fehlerfreien und fehlerbehafteten Modellen stell jedoch eine nicht unerhebliche Herausforderung dar. In dieser Präsentation geben wir einen praxisnahen Überblick über die Modellierung in Simscape™ und zeigen, wie sich verschiedenste Fehlertypen einfach und systematisch abbilden und analysieren lassen. Nach einer kurzen Einordnung der Fehlermodellierung im Kontext von Model-Based System Engineering, FMEA und Requirements Engineering werden die Vorteile moderner, nicht-invasiver Ansätze gegenüber klassischen „Dirty Models“ erläutert.
Im Mittelpunkt steht die konkrete Umsetzung: Anhand von Beispielen aus den Bereichen Halbleiter, Motoren und Batteriezellen wird gezeigt, wie Fehler in Simscape modelliert, konfiguriert und analysiert werden. Viele Simscape Blöcke bieten bereits die integrierte Möglichkeit, typische physikalische Fehlerfälle abzubilden. Auch eigene Simscape Blöcke können in der ssc-Sprache mit Fehlern beaufschlagt werden. Die Fehler können dann während der Simulation durch zeitliche oder logische Bedingungen ausgelöst und die richtige Reaktion darauf getestet werden.
Diese Präsentation richtet sich an Entwickler und Ingenieure, die Systeme entwickleln und analysieren, bei denen Robustheit und korrektes Verhalten auch im Fehlerfall bereits in der Simulation abgedeckt werden soll. Sie vermittelt sowohl methodische Grundlagen als auch praktische Tipps für die Umsetzung im Modell.
14:00–14:30
|
Nils Hornik
MathWorks
|
|
|
Verifikation, Validierung und Zertifizierung von KI-Modellen (DE)
Künstliche Intelligenz (KI), insbesondere in Form trainierter neuronaler Netze, ist in Bereichen wie Bildklassifizierung, Objekterkennung und natürlicher Sprachverarbeitung nicht wegzudenken. Diese Anwendungsmöglichkeiten von KI-Modellen stoßen auch in sicherheitskritischen Sektoren wie der Luft- und Raumfahrt, der Automobilindustrie und dem Gesundheitswesen auf hohes Interesse. Verifizierung und Validierung dieser Modelle stellen jedoch besondere Herausforderungen dar, da herkömmliche Software-Assurance-Prozesse die inhärenten Komplexitäten von KI-Systemen, wie mangelnde Transparenz und unvorhersehbares Verhalten unter bestimmten Bedingungen, oft nicht berücksichtigen.
KI-Verifizierung und -Validierung (V&V) ist für die Zertifizierung KI-fähiger Systeme in diesen kritischen Bereichen aber unerlässlich. Es gibt mittlerweile Industriestandards, die diesen Prozess begleiten, darunter ISO/PAS 8800:2024 für die Automobilindustrie, welcher Sicherheitseigenschaften, Risikofaktoren und Verifizierungstechniken für Straßenfahrzeuge definiert. ARP6983 (in Arbeit) ist ein Standard für die Luftfahrtindustrie, welcher Leitlinien für die Entwicklung KI-gesteuerter Flugzeugsysteme mit Schwerpunkt auf Zertifizierung, Sicherheitsbewertung und Einhaltung gesetzlicher Vorschriften bietet. ECSS-E-HB-40-02A schließlich ist ein Handbuch für Raumfahrttechnik, mit Verfahren für zuverlässiges maschinelles Lernen innerhalb einer „Sicherheitskäfig“-Architektur. Diese Standards schaffen robuste Rahmenbedingungen, um die Sicherheit und Zuverlässigkeit KI-gestützter technischer Systeme zu gewährleisten. Durch Methoden wie szenariobasierte Tests, formale Überprüfung von Eigenschaften, Erklärbarkeitstechniken und Laufzeitabsicherung stellt Verifizierung und Validierung (V&V) sicher, dass KI-Modelle bestehende und zukünftige Industriestandards erfüllen. MathWorks bietet Tools, die diese Prozesse unterstützen – kompatibel mit MATLAB®- und PyTorch®-Modellen – und so die Zertifizierung von sicherheitskritischen Anwendungen erleichtern.
Christoph Stockhammer
MathWorks
14:00–14:30
Christoph Stockhammer
MathWorks
|
Christoph Stockhammer
MathWorks
|
|
|
Modeling Physical Layers in MATLAB: mMIMO Beamforming Using Measured Channels (EN)
Having a link-level simulator in MATLAB® that models our physical layer hardware brings many advantages. We can easily simulate mobile radio scenarios for 4G and 5G and limit expensive lab and field testing. It is not only useful for designing powerful baseband algorithms, but it also allows us to track the link-level performance of our products in detail and compare different hardware generations against each other. For modeling radio channels, we can choose from a variety of standardized channels but also have the possibility to inject channel data collected from field tests.
In this presentation, we investigate eigen-based beamforming with different covariance matrix flavors for DL MU-MIMO. We compare the options both for the widely used 3GPP CDL channel model and for SRS channel data that we collected from field tests. This shows that the comparison between schemes differs for CDL and measured channels.
Frederic Knabe and Shengdi Wang
Nokia
14:00–14:30
Frederic Knabe and Shengdi Wang
Nokia
|
Frederic Knabe and Shengdi Wang
Nokia
|
|
|
Efficiently Creating Realistic Crash Scenarios Using RoadRunner (EN)
The development of advanced driver assistance systems and highly automated driving functions will play a crucial role in reducing the number of people killed and severely injured in traffic accidents in the future. In addition to generic scenarios, scenarios derived from naturalistic driving studies, field operational tests, and simulator studies, real-world accident scenarios are important test cases during the development, verification, and validation of such functions. The GIDAS-PCM database is the biggest database for pre-crash scenarios in the world, with in-depth information that is collected immediately after the accident and directly at the accident scene. Converting GIDAS-PCM cases into OpenSCENARIO® and OpenDRIVE® and further enriching the data with GIDAS information provides valuable and easy to use test cases (especially “edge cases”) for a large amount of simulation environments.
Thomas Unger
Verkehrsunfallforschung an der TU Dresden GmbH
14:00–14:30
Thomas Unger
Verkehrsunfallforschung an der TU Dresden GmbH
|
Thomas Unger
Verkehrsunfallforschung an der TU Dresden GmbH
|
|
|
|
14:30
|
Beschleunigung des Prototyping für autonomes Fahren durch innovative CI/CD-Cloud-Workflows (DE)
Autonomes Fahren wird voraussichtlich die Automobilindustrie revolutionieren und den Weg für innovative Transportlösungen ebnen. Dafür braucht es eine robuste Entwicklungsumgebung, um funktionale Systeme für autonome Fahrzeugprototypen zu entwickeln. Bei der TRATON Group wird diese Umgebung durch die dSPACE MicroAutoBox in Verbindung mit MATLAB® und Simulink® bereitgestellt, was die Erstellung und das Testen komplexer Funktionen erleichtert.
Um den Entwicklungsprozess bei der TRATON Group zu optimieren, setzen wir Continuous Integration und Continuous Deployment (CI/CD) ein. Diese Verfahren stellen sicher, dass modellbasierte Funktionen effizient erstellt, getestet und bereitgestellt werden, wobei hohe Qualitäts- und Leistungsstandards eingehalten werden.
Bisher wurde der Prozess mit physischen, lokalen Computern durchgeführt. Für bessere Skalierbarkeit und Robustheit wird nun Amazon Web Services (AWS) genutzt, dessen leistungsstarke Cloud-Infrastruktur umfangreiche Rechenanforderungen bewältigen kann.
In diesem Zusammenhang vereinfachen die kürzlich eingeführten MATLAB-Batch-Token die Nutzung von AWS zur Freigabe von MATLAB-Lizenzen für Cloud-Runner, die keinen Zugriff auf unternehmenseigenen Lizenzserver haben. Mit der entsprechenden Umstellung der dSPACE-Lizenzierung von hardwarebasierten Dongles auf cloudbasierte Lizenzserver wird die lokale Lösung durch die Cloud-Lösung ersetzt.
Thomas Anstötz
TRATON Group
14:30–15:00
Thomas Anstötz
TRATON Group
|
Thomas Anstötz
TRATON Group
|
|
|
How SysML v2 API Will Streamline MBSE Workflows (EN)
Model-based systems engineering (MBSE) is a methodology that integrates multiple engineering disciplines to manage and realize complex systems, ensuring the availability of relevant information across the entire system life cycle. The recent development of the SysML v2 API significantly enhances this integration by enabling diverse engineering tools to access and interact with SysML v2 system models.
In this presentation, we demonstrate how MATLAB® and Simulink® support SysML v2 and how users can leverage the SysML v2 standards to streamline their workflows. Specifically, we will showcase how a model created in one tool can be ingested into the MATLAB and Simulink environment, subjected to various analyses—including trade-off studies and requirements completeness and consistency analysis—and subsequently updated based on these findings. The enhanced model can then be committed back to the SysML v2 repository, facilitating a seamless and collaborative MBSE process.
14:30–15:00
|
Marco Bimbi
MathWorks
|
|
|
Unterstützung des Stromnetzes durch verteilte Systeme mit Model-Based Design (DE)
Die Fähigkeit elektrischer Komponenten zur Stabilität und Effizienz des Stromnetzes beizutragen, wird als Netzunterstützung bezeichnet. Diese Funktion ist besonders wichtig in modernen Energiesystemen, die zunehmend auf erneuerbare Energiequellen beruhen, welche eine größere Flexibilität und Ausfallsicherheit erfordern.
In diesem Projekt wurde Model-Based Design eingesetzt, um verschiedene Netzunterstützungsfunktionen in drei unterschiedliche Komponenten durch entsprechende Teams zu integrieren: einen Wechselrichter, eine Turbinensteuerung und eine Windparksteuerung. Model-Based Design ermöglicht die Konzeption und Simulation komplexer Systeme anhand von Modellen vor der praktischen Umsetzung. Die Modelle wurden verwendet, um Netzstützungsfunktionen als zusätzliche Funktionen in die bestehenden Anlagen zu integrieren. Der Implementierungsprozess umfasste mehrere Schritte: Zunächst wurden Simulink®-Modelle für die Netzstützungsfunktionen entwickelt und in Simulationen getestet. Diese Modelle wurden dann in die Regelungssoftware der Anlagen integriert. Schließlich wurden die Systeme in einer Testumgebung betrieben, um ihre Leistung und Zuverlässigkeit zu bewerten.
Die Testergebnisse zeigten, dass die Integration der netzunterstützenden Funktionen erfolgreich war. Die Anlagen trugen zur Netzstabilität bei, indem sie auf Schwankungen im Stromnetz reagierten und die erforderlichen Anpassungen vornahmen. Der Einsatz von Model-Based Design ermöglichte die schnelle und effiziente Entwicklung und Implementierung der neuen Funktionen.
Lena Schweizer
ENERCON / WRD
14:30–15:00
Lena Schweizer
ENERCON / WRD
|
Lena Schweizer
ENERCON / WRD
|
|
|
Implementing a CI/CD Pipeline for an AI-Based Controller Using MATLAB and Simulink (DE)
Imagine standing before an impressive machine that produces PET bottles. This machine is not only a marvel of engineering but also a prime example of the integration of cutting-edge technologies. In this presentation, you will learn how continuous integration and continuous delivery seamlessly connect with a machine learning pipeline to develop and provide an intelligent controller.
14:30–15:00
Ilona Krause
Krones AG
- Industrial Automation and Machinery
|
Ilona Krause
Krones AG
|
|
- Industrial Automation and Machinery
|
Digital Front-End Key Challenges for 6G OFDM Systems (EN)
To cope with the high data rate requirements of 6G, the channel bandwidth for 6G is expected to exceed that of 5G. In 3GPP Release 18, the maximum supported channel bandwidth in FR2 is 2 GHz for certain channel configurations, including the n263 band, which supports up to 2 GHz bandwidth in specific configurations. When it comes to the upper midband, the 7–15 GHz range is considered a potential band for 6G, where the channel bandwidth is expected to exceed 800 MHz.
In this presentation, we address the challenges in the digital front-end (DFE) with respect to increased signal bandwidth in terms of digital signal processing, DFE architecture, and high-speed digital conversion systems. We use MATLAB® to implement the transmit/receive chains of the DFE, including IFFT/FFT, windowing, frequency conversion, and digital pre-distortion. We optimize the components of the Tx/Rx chains to fulfill the 3GPP base station conformance test requirements, such as modulation quality, ACLR measurements, and emission mask.
Dr. Khodr Saaifan
NXP Semiconductors Germany GmbH
14:30–15:00
Dr. Khodr Saaifan
NXP Semiconductors Germany GmbH
|
Dr. Khodr Saaifan
NXP Semiconductors Germany GmbH
|
|
|
Fehlersimulation im Entwicklungsprozess – von Systemarchitektur bis HiL (DE)
Fehlerinjektionstests sind eine entscheidende Methode zur Sicherstellung der Systemrobustheit und werden traditionell auf Hardware-Ebene im Rahmen von Hardware-in-the-Loop-Tests (HiL) durchgeführt.
Durch den Einsatz modellbasierter Entwicklung können Fehlersimulation und Fehlerinjektion jedoch bereits deutlich früher im Entwicklungsprozess, nämlich auf Ebene der Systemarchitektur und der Model-in-the-Loop-Phase (MiL), eingesetzt werden.
Dadurch lässt sich die Lücke zwischen Systemmodellen und HiL-Tests schließen, was zu kürzeren Entwicklungszyklen und einer verbesserten Fehlerabdeckung führt. Durch den Einsatz von Simulink Fault Analyzer™ wird zudem eine systematische Analyse von Fehlereffekten und mehr Sicherheit durch Simulation ermöglicht. Dies schafft eine formale Verbindung zwischen Fehlern, Gefahren, Fehlererkennungs- und -minderungslogik und trägt entscheidend zur Erhöhung der Systemsicherheit bei.
14:30–15:00
|
Sonja Krzok
MathWorks
|
|
|
|
15:00
|
Tackling Software Complexity: Scalable Collaboration with Model-Based Design (EN)
As engineering software grows in scale and complexity, development teams are increasingly challenged to maintain quality, consistency, and collaboration. As a result, developers are becoming increasingly unhappy, projects are delayed, and competition may take over market share. In this session, learn how MATLAB® and Simulink® enable teams to tackle these challenges with a range of integrated tools and workflows.
This presentation explores how Model-Based Design encourages structured development, and how MATLAB Projects, integrated source control, automated checks, continuous integration, and dashboards can help reduce friction in everyday work. The session outlines how these concepts fit together and support modern software engineering goals such as scalability, maintainability, updatability, and team alignment.
This talk is ideal for those who are curious about how to stay productive and collaborative—even as systems and codebases grow more complex.
Amrish Karchuli
MathWorks
15:00–15:30
Amrish Karchuli
MathWorks
Yousef Jarrar
MathWorks
|
Amrish Karchuli
MathWorks
Yousef Jarrar
MathWorks
|
|
|
Modell-basiertes Flugzeug-Vorentwurfs-Framework für Flugzeug-Systeme, demonstriert an einem Wasserstoff-Konzeptflugzeug (DE)
Neuartige Flugzeugkonzepte und Technologien wie Wasserstoffantriebe prägen die Systemarchitekturen der Zukunft. Das modellbasierte Gesamtsystemdesign (OSD) bietet einen strukturierten Ansatz für die Durchführung von Trade-off-Studien zu Flugzeugsystemarchitekturen.
Zunächst wird das Flugzeug entworfen und die obersten Anforderungen an das Flugzeug definiert. Dieser Schritt ist nicht direkt Teil des OSD-Rahmenwerks und wird in der Regel von Partnern wie dem DLR durchgeführt, die die Flugzeuginformationen über eine standardisierte CPACS-Datei bereitstellen.
Anschließend werden OBS-Architekturen definiert, bewertet und auf funktional-logischer Ebene mit MBSE-gesteuerten Methoden unter Verwendung der internen SARA-Methodik ausgewählt. Operationen, Anforderungen, Funktionen und logische Architekturen werden auf nachvollziehbare Weise modelliert. Das Modell dient als einzige Quelle für die integrierte Sicherheitsbewertung, Leistungsbewertung sowie frühzeitige Verifizierung und Validierung. Darüber hinaus unterstützen bestehende Architektur-Muster und Technologiekenntnisse den Architekturerstellungsprozess, erleichtern die Entscheidungsfindung und helfen bei der Auswahl vielversprechender Architekturvarianten.
Schließlich werden die verbleibenden vielversprechenden Architekturen mit der internen GeneSys-Methodik weiter bewertet. Die Systemkomponenten werden geometrisch innerhalb des Flugzeugs positioniert und dann anhand physikalischer Dimensionierungsgesetze, die aus detaillierten Systemdesign-Methoden abgeleitet wurden, vorläufig dimensioniert. Das Ergebnis von GeneSys umfasst Komponenten- und Systemmassen sowie komponentenspezifische Auslegungsparameter, wie die Auslegungsleistung eines elektrischen Generators oder den Hubraum einer Hydraulikpumpe. Darüber hinaus wird eine vorläufige quasistatische Simulation des Gesamtsystemverhaltens durchgeführt, die letztlich Informationen über die Wellenleistungsabnahme entlang eines Referenzmissionsprofils liefert.
Das Framework wird an zwei Konzepten für wasserstoffbetriebene Flugzeuge demonstriert und zeigt seine Fähigkeit, parametrische Architektur-Vergleichsstudien zu beschleunigen.
Dr.-Ing. Martin Halle
Hamburg University of Technology (TUHH)
15:00–15:30
Dr.-Ing. Martin Halle
Hamburg University of Technology (TUHH)
|
Dr.-Ing. Martin Halle
Hamburg University of Technology (TUHH)
|
|
|
KI-basiertes Design: Agile Produktentwicklung elektrischer Fahrzeugantriebe (DE)
Die Entwicklung elektrischer Fahrzeugantriebsstränge ist durch ein breites Spektrum an konfliktären Entwicklungszielen gekennzeichnet, insb. Leistung, Kosten, Bauraumintegration und Energieeffizienz. Dies führt zu enormer Komplexität im Designprozess und Ingenieure müssen alle diese Ziele berücksichtigen um das bestmögliche Produktdesign zu finden. Diese äußerst herausfordernde Aufgabe wird noch anspruchsvoller, wenn sich die Anforderungen während des Entwicklungsprozesses unter hohem Zeitdruck ändern, was in der praktischen Automobilentwicklung eher die Regel als die Ausnahme ist.
Um die agile Entwicklung von elektrischen Antriebssträngen unter solchen Bedingungen zu ermöglichen, wird die Entwicklungsmethode OPED (Optimization of Electric Drives) vorgestellt. OPED digitalisiert den Prozess von den Anforderungen bis hin zu optimalen Lösungen für die Entwicklung elektrischer Antriebsstränge vollständig. Dazu werden parametrische digitale Modelle des Antriebsstrangs und ein evolutionärer Optimierungsalgorithmus in Kombination mit künstlichen neuronalen Netzen aus dem Bereich der KI-Methoden eingesetzt. Der Designprozess wird so innerhalb von 24 Stunden durchgeführt, was eine schnelle und optimale Reaktion auf sich ändernde Anforderungen ermöglicht. Darüber hinaus können Unsicherheiten in den Anforderungen durch Requirements Engineering adressiert werden.
Die Software ist bei einem weltweiten Automobilzulieferer erfolgreich im Einsatz. Sie beruht auf MATLAB®-Funktionen zu KI-Methoden wie der Statistics and Machine Learning Toolbox™ und der Optimization Toolbox™. Die grafische Benutzeroberfläche ist im MATLAB App Designer umgesetzt.
Die Methode wird anhand einer Fallstudie für einen elektrischen PKW-Achsantrieb demonstriert, sodass Produktionskosten, Energieeffizienz und Bauraumintegration innerhalb von 24 Stunden optimiert werden. Diese rasche Beantwortung von neuartigen Anforderungen erlaubt somit die agile Entwicklung von elektrischen Antriebssträngen.
Martin Hofstetter
Technische Universität Graz
15:00–15:30
Martin Hofstetter
Technische Universität Graz
|
Martin Hofstetter
Technische Universität Graz
|
|
|
How to Systematically Determine the Quality of AI-Based Control Systems for Power Converters (EN)
Power converters can be found almost everywhere—in LED lights, chargers, computers, cars, and trains. Their control is currently often based on the classic PID controller. This is easy to understand and implement, but it is a purely linear controller. Modern power converters switch back and forth between different states. This means that the resulting systems are neither time-invariant nor linear, so that the PID controller cannot always provide optimal control. Rapid load changes and larger state spaces thus push PID controllers to their limits. The time therefore seems ripe for controllers based on artificial neural networks and trained using reinforcement learning. But how can the quality of such a controller be assessed?
First of all, it is clear that it must be better than a well-adjusted PID controller. But how good can an AI-based controller actually be, and how is it optimally trained? This presentation introduces a class of neural networks and defines the corresponding reinforcement learning problem for their training. The reward function is then used in a controller based on model predictive control. This results in a controller with the best possible control (for a given converter). However, due to its design, this control is far too computationally intensive. The presentation introduces corresponding Simulink models, discusses benchmark problems and their results, and thus provides a framework that makes it possible to contextualize the quality of any nonlinear, AI-based control systems.
Dr. Benjamin Schwabe
Infineon Technologies AG
15:00–15:30
Dr. Benjamin Schwabe
Infineon Technologies AG
|
Dr. Benjamin Schwabe
Infineon Technologies AG
|
|
|
Accelerate Your 6G R&D with MATLAB (EN)
The advent of 6G technology promises to revolutionize communication systems, enabling unprecedented capabilities and applications. In this presentation, hear how powerful workflows in MATLAB® can accelerate your 6G R&D research. MATLAB provides a comprehensive environment for investigating and developing 6G enabling technologies, including waveform exploration, integrated sensing and communication, AI and neural receivers, reconfigurable intelligent surfaces, and non-terrestrial networks.
We will demonstrate how MATLAB facilitates the research and development of these critical technologies, showcasing its robust capabilities in simulation, modeling, and analysis.
15:00–15:30
|
Dr. Ahmad Saad
MathWorks
|
|
|
AI-Based Fault Detection on Industrial Controllers (EN)
In this session, we tackle the integration of predictive maintenance (PdM) systems on industrial controllers, a key advancement in Industry 4.0. Learn how Siemens automation systems and Model-Based Design can optimize industrial operations. We'll explore the integration of Simulink® components within the TIA Portal and LiveTwin, highlighting practical benefits through a live demo of fault detection using Siemens automation technology. This demo showcases synthetic data generation via a digital twin approach, focusing on an industrial fan application. The project aims to enhance fault classification in industrial equipment by embedding advanced PdM strategies within the Siemens framework. MATLAB® and Simulink provide deployment strategies that have been successfully optimized maintenance and offer Siemens customers AI-driven applications with significant operational advantages.
The demo illustrates a PdM framework for Siemens PLCs and edge devices, simulating faults in a physics-based model to create datasets, followed by data preprocessing and feature extraction. A machine learning model is developed for fault classification and tailored for edge computing. Integration with Siemens hardware ensures efficient PdM model deployment for real-time monitoring and swift issue resolution, minimizing downtime and advancing smart manufacturing.
Dr.-Ing. Rainer Mümmler
MathWorks
15:00–15:30
Abdül Kadir Kaya
Siemens
Dr.-Ing. Rainer Mümmler
MathWorks
- Industrial Automation and Machinery
|
Abdül Kadir Kaya
Siemens
Dr.-Ing. Rainer Mümmler
MathWorks
|
|
- Industrial Automation and Machinery
|
|
15:30
|
Pause, Networking & Ausstellung
|
|
|
|
|
16:00
|
Podiumsdiskussion: Engineering der Zukunft – Herausforderungen und innovative Ansätze für die Entwicklung (DE)
Die Anforderungen an das Engineering haben sich in den letzten Jahren branchenübergreifend verändert. "Software-Defined Systems" erfordern frische Ansätze in der Entwicklung, Validierung und Implementierung. Künstliche Intelligenz gewinnt zunehmend an Bedeutung in den Ingenieursdisziplinen, die bislang auf traditionelle Methoden setzen. Zudem sind auch der Fachkräftemangel und die Sicherung des Ingenieurnachwuchses drängende Themen.
Wir laden führende Experten aus Industrie und Wissenschaft ein, um über diese und weitere Themen rund um das Engineering der Zukunft zu diskutieren. Freuen Sie sich auf eine spannende Diskussion mit wertvollen Impulsen und neuen Perspektiven.
Hans Adlkofer, SVP Automotive Systems
Infineon Technologies AG
Hr. Hans Adlkofer has been senior vice president of automative systems at Infineon Technologies since 2009. This group translates the application requirements of the automotive industry into product road maps, developing a chipset that addresses all requirements and pain points of customer.
He started his career at National Semiconductor in the marketing department with focus on ASICs for the automotive industry before joining Giesecke & Devrient to develop secure operating system for smart cards. He later moved to Siemens Semiconductor (now Infineon), where he headed an application center for security and smart card ICs and moved to Singapore to manage business operations for the Asian market. In 2003, he took over the responsibility for the business unit sensors in Infineon Technologies to drive growth in automotive applications such as radar sensors, pressure sensors, and wheel speed sensors. Hr. Adlkofer studied electronics with the focus on semiconductor technologies.
Jens Dietrich, Head of Control & Protection Platform – Control Software
Siemens Energy
Jens Dietrich is the head of control platforms for HVDC and FACTS applications at Siemens Energy, Germany. His group is responsible for the development, continuous improvement, and targeted use of a software ecosystem based on MATLAB and Simulink for the delivery of customized control systems for HVDC and FACTS. Jens leads a team of passionate experts who love to bring state-of-the-art software development techniques to the model-driven world.
Previously, he worked as development manager, product owner, and developer for various control and simulation applications in power transmission. He holds a M.Sc. and B.Sc. from RWTH Aachen University in electrical and computer engineering with focus on power systems and control simulation.
Prof. Dr.-Ing. Florian Holzapfel, Chair Professor
TUM Institute of Flight System Dynamics
Florian Holzapfel has been a full professor and director of the Institute of Flight System Dynamics at Technische Universität München for more than 17 years. His research areas include dynamics, guidance, navigation, and control of aerospace vehicles, along with avionics and safety-critical systems. His particular focus is on transitioning novel methods to industrial practice in close collaboration with small and medium enterprises and startups. International collaboration is a key element.
Prior to joining TUM as a professor, he was a project leader for flight control and simulation at iABG mbH. Florian holds a PhD from TUM with his thesis on nonlinear adaptive flight control of a UAV. He graduated from TUM with a diploma in mechanical engineering, majoring in aerospace engineering.
Dagmar Münch, Head of Development
Küster Automotive GmbH
Dagmar Münch is head of development at Küster Group where she oversees system, mechanics, software, and electronics engineering, as well as testing, functional safety, and cybersecurity. She has held key leadership roles in electrical/electronic development since joining Küster in 2023.
Prior to Küster, Frau Münch held senior positions at leading automotive and technology companies. At Schaeffler Technologies, she served as head of product development for mechatronics, where she was responsible for the development of innovative mechatronic solutions for industrial and consumer products. At Porsche, she led the development of electronic sensors, actuators, and hybrid components. Earlier in her career, she was deputy head of powertrain electronics sensors at Volkswagen, where she specialized in the development of sensor technology for powertrain applications. She began her professional journey at Robert Bosch GmbH, contributing to requirements management and the development of advanced sensor systems.
Nils-Hendric Schall, Division Manager, Electric & Software Engineering
WRD Wobben Research and Development GmbH
Nils-Hendric Schall is the division manager of electric and software engineering at ENERCON Group, a position he has held since 2022. Mr. Schall began his professional journey as an electrical engineer at MAN Roland Druckmaschinen AG in Augsburg before becoming the engineering group lead in 2002. From 2005 on, he led the data analysis and measurement infrastructure group at MAN Nutzfahrzeuge AG (now TRATON) in Munich. In October 2006, Nils-Hendric Schall became the head of R&D at manroland AG, where he was already working with Model-Based Design. He became vice president of electric and software engineering at Nordex Energy GmbH in 2011, and in 2019, he moved to Wobben Research and Development GmbH (ENERCON Group) in Aurich as the head of division system controls where he introduced Model-Based Design in the teams.
Nils-Hendric Schall studied electrical and IT engineering at the Technical University of Munich, graduating with a diploma degree in engineering.
Prof. Dr.-Ing. Rainer Stark, Fachgebietsleiter Industrielle Informationstechnik
Technische Universität Berlin
Prof. Rainer Stark is professor for industrial information technology at the Technical University of Berlin. Previously, he was director of the virtual product creation division of the Fraunhofer Institute for Production Systems and Design Technology (IPK) until 2021, and the managing director of the department for machine tools and factory management (IWF) of the Technical University of Berlin until 2013. He is an active researcher and expert in virtual product creation, digital twins, and data engineering and analytics. Prof. Stark is member of the German Academy of Technical Sciences (acatech), the scientific societies WiGeP, Design Society and CIRP, and board member of the ProSTEP iViP association. He is also an active member of the VDI board of product development and product management and of the acatech research board Industrie 4.0. He has been a member of the speaker team of the research board Industrie 4.0 since June 2024.
Peter Seeberg, Founder
asimovero
Peter Seeberg is an independent AI consultant for asimovero. He spent 25 years working in the IT industry for companies such as Intel, Infor, Seiko, Mentor, and almost 10 years in industrial automation at Softing.
Peter moderates discussions, does public presentations, and advises companies on the introduction of AI. He co-produces a weekly podcast on industrial ai and is the host of the OPC Foundation podcast. Peter Seeberg studied computer aided design in Delft.
16:00–16:45
Hans Adlkofer, SVP Automotive Systems
Infineon Technologies AG
Jens Dietrich, Head of Control & Protection Platform – Control Software
Siemens Energy
Prof. Dr.-Ing. Florian Holzapfel, Chair Professor
TUM Institute of Flight System Dynamics
Dagmar Münch, Head of Development
Küster Automotive GmbH
Nils-Hendric Schall, Division Manager, Electric & Software Engineering
WRD Wobben Research and Development GmbH
Prof. Dr.-Ing. Rainer Stark, Fachgebietsleiter Industrielle Informationstechnik
Technische Universität Berlin
Peter Seeberg, Founder
asimovero
|
Hans Adlkofer, SVP Automotive Systems
Infineon Technologies AG
Jens Dietrich, Head of Control & Protection Platform – Control Software
Siemens Energy
Prof. Dr.-Ing. Florian Holzapfel, Chair Professor
TUM Institute of Flight System Dynamics
Dagmar Münch, Head of Development
Küster Automotive GmbH
Nils-Hendric Schall, Division Manager, Electric & Software Engineering
WRD Wobben Research and Development GmbH
Prof. Dr.-Ing. Rainer Stark, Fachgebietsleiter Industrielle Informationstechnik
Technische Universität Berlin
Peter Seeberg, Founder
asimovero
|
|
|
|
16:45
|
Technology Highlights, Event Highlights, and Next Steps (EN)
To wrap up this year’s MATLAB EXPO, we’ll look back at the technology highlights from recent MathWorks releases and the major trends we’ve seen reflected across the tracks and panel discussions. We’ll also share our key takeaways from the event and offer a forward-looking view of where MathWorks is heading. Join us for a concise, inspiring closing session before heading home.
Graham Reith, Worldwide Industry Marketing Manager
MathWorks
Udo Gohier, Regional Director Central EMEA
MathWorks
16:45–17:15
Graham Reith, Worldwide Industry Marketing Manager
MathWorks
Udo Gohier, Regional Director Central EMEA
MathWorks
|
Graham Reith, Worldwide Industry Marketing Manager
MathWorks
Udo Gohier, Regional Director Central EMEA
MathWorks
|
|
|
|
17:15
|
Networking Drinks
|
|
|
|