Modeling and Solving Optimization Problems

Mary Fenelon

Outline

- Introduction
- Nonlinear problem
- Hydroelectric dam operation
- Location planning
- Takeaways

Introduction

What can you do with optimization?

BuildingIQ: Reduce energy consumption

Realtek: Optimize designs

PTTEP: Plan gas field production

STIWA: Optimize trajectories

Clearpath Robotics: Minimize travel distance

Tessella: Minimize propellant consumption

Formulating an Optimization Problem: Transportation Problem

Objective

What is my goal? minimize cost of transportation

Variables

What are my choices?

Amount shipped from/to sites

Constraints

What restricts my choices? Supply and demand at sites

Datasupply, demand, cost

Formulating an Optimization Problem: Transportation Problem

Specify the problem using expressions with **Problem-Based** Optimization $\frac{e^{x}(4x^2+2y^2+4xy+2y-1)}{2}$

```
subject to
prob = optimproblem;
                                                          \frac{xy}{2} + (x+2)^2 + \frac{(y-2)^2}{2} \le 2
x = optimvar('x');
y = optimvar('y');
                                                          x + y \leq 1
prob.Objective = exp(x).*(4*x.^2 + 2*y.^2 + 4*x.*y + 2*y - 1);
prob.Constraints.c1 = x.*y/2 + (x+2).^2 + (y-2).^2/2 <= 2;
prob.Constraints.c2 = x + y \le 1;
initialPt.x = -3;
initialPt.y = 3;
[sol,fval,exitflag,output] = solve(prob,initialPt)
```

x, y

Problem-Based Optimization makes optimization easier to use

- Familiar MATLAB syntax for expressions
- No need to write functions and build coefficient matrices
- fcn2optimexpr enables use of non-supported operators and functions
- Functions to help debugging show, evaluate, infeasibility
- Automatic solver selection
- Automatic differentiation R2020b

Solve many types of optimization problems with MATLAB

Optimization Toolbox

Global Optimization Toolbox

Constraint Type	Objective Type					
	Linear	Quadratic	Least Squares	Smooth nonlinear	Nonsmooth	Multiobjective
None		quadprog	lsqcurvefit lsqnonlin	fminsearch fminunc	fminsearch ga	fgoalattain fminimax paretosearch gamultiobj
Bound		quadprog	lsqcurvefit lsqnonlin lsqnonneg lsqlin	fmincon	fminbnd ga surrogatopt patternsearch particleswarm simulannealbnd	fgoalattain fminimax paretosearch gamultiobj
Linear	linprog	quadprog	lsqlin	fmincon	ga patternsearch surrogatept	fgoalattain fminimax paretosearch gamultiobj
Second-Order Cone	coneprog	coneprog				
General smooth	fmincon	fmincon	fmincon	fmincon	ga patternsearch surrogateopt	fgoalattain fminimax paretosearch gamultiobj
General nonsmooth	ga patternsearch	ga patternsearch	ga patternsearch	ga patternsearch	ga patternsearch surrogateopt	paretosearch gamultiobj
Discrete	intlinprog				ga surrogateopt	

Exercises

Instructions to get started with the exercises Clickable links are in the Chat and in the handout

- 1. Access MATLAB Online using the link. Sign in with your MathWorks account
- 2. Access the shared folder on MATLAB Drive using the link
 - Create your own unshared copy of the folder and its contents and add it to your files, by clicking Add to my Files and select Copy Folder
 - b. Click Files on the left side of the page to access the folder in your MATLAB Drive.
- 3. Return to the MATLAB Online window and open the Live Script
 - a. Double-click on **Expo2021_Optimization_Workshop** folder in the Current Folder pane
 - b. Double-click on **1_Simple_Nonlinear_Problem** folder
 - c. Double-click on Work_NonlinearProblem.mlx to open

Exercise 1 - Nonlinear Problem

Purpose:

- Ensure MATLAB Online is running properly
- Create and solve a nonlinear optimization problem
- Include a black-box MATLAB function

To Do:

- Open the 1-Simple_Nonlinear_Problem folder
- Open Work_NonlinearProblem.mlx
 - Accept the prompt to open MATLAB Online
- Follow along with instructor

Exercise 2 - Hydroelectric Dam Operation

Purpose:

- Solve a planning problem over multiple time periods
- Use vectors of variables and constraints

To Do:

- Open the 2-HydroelectricDamOperation folder
- Open Work_HydroelectricDamOperation.mlx
- Follow along with instructor

Hydroelectric Dam Operation Review

- Constructed the model so that any size data can be used
- Created vectors of variables and constraints
- Created intermediate optimization expressions as a convenience
- Solved a quadratic program

MATLAB EXPO

Exercise 3 - Disaster Response Facility Location

Purpose:

- Solve a facility location problem
- Use arrays of variables and constraints

To Do:

- Open the 3-LocationPlanning folder
- Open Work_DisasterResponseFacilityLocation.mlx
- Work on your own

Facility Location Review

- Indexed variables by strings
- Created 2-D arrays of variables
- Solved an integer linear program

Takeaways

Problem-Based Optimization makes optimization easier to use

- Familiar MATLAB syntax for expressions
- No need to write functions and build coefficient matrices
- fcn2optimexpr enables use of non-supported functions
- Functions to help debugging show, evaluate, infeasibility
- Automatic solver selection
- Automatic differentiation

• eqnproblem for nonlinear systems of equations

Use these resources to learn about optimization with MATLAB

Getting Started					
Optimization Toolbox	<u>Overview</u>	<u>Video</u>	Documentation		
Global Optimization Toolbox		<u>Video</u>	Documentation		
Cheat Sheets					
Training: Optimization Techniques in MATLAB					

How-To Videos		
Master Class: Solving Optimization Problems	Mathematical Modeling with Optimization	
Design Optimization with MATLAB	Linear and Mixed-Integer Linear Programming	
Optimize Live Task	Advanced Statistics and Optimization	
Surrogate Optimization	Multiobjective Optimization	
Global Search	MultiStart Optimization	

Basics	
Nonlinear Programming	
Linear Programming	
Integer Programming	
Quadratic Programming	
Genetic Algorithm	
Least Squares and Nonlinear Systems of Equations	

Examples			
Flight Path Optimization	Traveling Salesman Problem		
Production Planning	Portfolio Optimization		
Minimizing Electrostatic Energy	Optimal Dispatch of Power Generators		
Antenna Design	Circuit Component Selection		

Thank you

© 2021 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.