Meeting the Challenges of Design Optimization

Mary Fenelon

Sohini Sarkar

Optimization techniques improve and accelerate design

Design Optimization Challenges

Difficult to set up

- Formulate optimization
- Connect multiple models
- Conflicting goals
- Choose solver/options

- Design iterations take too long
- Can't take advantage of existing results

Difficult to analyze results

- Understand solutions
- Understand trade-offs
- Collaborate with upstream/downstream teams

We'll see some ways to meet <u>design optimization challenges</u> through these case studies

CAD and FEA can model a disc brake under Thermomechanical Stress

 Goal: A design with low manufacturing cost and that meets stress standards

Challenges:

- How to set up the optimization
- Disc brake is modeled with external CAD software and with FEA
- Model evaluation takes several minutes

Surrogate Optimization finds an improved design

	Initial	Surrogate Optimization*
Volume (m ³)	4.75e-4	1.34e-4
Stress Ratio	0.19	0.49

*250 function evaluations

Surrogate Optimization finds a better design than the Genetic Algorithm when restricting the number of function evaluations

	Initial	Surrogate Optimization*	Genetic Algorithm*
Volume (m ³)	4.75e-4	1.34e-4	1.64e-4
Stress Ratio	0.19	0.49	0.92

*250 function evaluations

Genetic Algorithm

How we met the <u>design optimization challenges</u>

- File-based I/O & "system" command to connect multiple models
- Optimize task for formulating problem and guidance on solver

Disc Brake Design

- Surrogate optimization
- Use existing results to start optimization
- Checkpoint for restarting optimization
- Accelerate with parallel computing

- Progress plots
- Visualization of the temperature, stress, and design

We'll see some ways to meet <u>design optimization challenges</u> through these case studies

5G RF MEMS Filter Design Partner: OnScale

- Goal: Find optimal electrode alignment of FBAR resonator by minimizing spurious modes
- Challenges: Full 3D simulation and exploring design space are time consuming
 - Population of 70, 52 Generations, 3,640
 Simulations, >3,000 Core Hours

>3000 core hours required <48 Hour on 64-Core Cloud HPC

wyGA = GAOnScale("RF_GA", "GA of Pentagonal FBAR");

% Create account object
myGA.Account = Account("MyAccount");

% Assign input files to genetic algorithm
myGA.setGAFiles(["fbar.flxinp","baw.prjmat"]);

% Set termination constraints
myGA.setGATerminate(5, 10, 28, Inf);

% Set input variables and limits
myGA.setGAVariables(["a", "b", "c", "d", "e", "f", "g"], ...
[0.75 0.75 1.2135 0.75 1.2135 0.75 0.75], ...
[1.25 1.25 2.0225 1.25 2.0225 1.25 1.25]);

% Set score function myGA.setScoreFunction(@scoreFun);

% Run GA
myGA.startOrContinue();

Easy set up from MATLAB Toolbox by OnScale or OnScale API

How we met the <u>design optimization challenges</u>

- Genetic algorithm is easy to use
- MATLAB enables integration with external platforms

 Cloud-based, high-performance computing through OnScale (MathWorks Partner) We'll see some ways to meet <u>design optimization challenges</u> through these case studies

Electrified Powertrain Gear Ratio Case Study

- Goal: Determine gear ratios of a 3-motor EV to optimize competing objectives:
 - Fuel economy
 - Acceleration

Challenges:

- Fuel economy and acceleration are competing objectives
- The simulation takes 18 minutes to run

Build surrogate models with Model-Based Calibration Toolbox for fast model evaluations

- Generate Design of Experiments
- Evaluate Powertrain Blockset model for fuel economy and acceleration
- Fit response model

Create look-up tables from the response models using Model-Based Calibration Toolbox

How we met the design optimization challenges

EV Gear Design

 Multiobjective formulation for the competing objectives

- Parallel computing to build response surface model
- Look-up table for fast evaluations
- Paretosearch solver for efficient solution

Pareto curves to explore tradeoffs

We'll see some ways to meet <u>design optimization challenges</u> through these case studies

Use Design of Experiments and Optimization to understand tradeoffs in the conceptual design stage

- Goal: Choose components to
 - Maximize endurance and power-to-weight ratio
 - Minimize cost

Challenges:

- Competing objectives
- Work with architecture in System Composer
- No model to use for analysis
- Need to understand tradeoffs of objectives and requirements

Quadcopter Design

How we met the <u>design optimization challenges</u>

- Problem-based formulation
- Multi-Disciplinary Analysis and Optimization
- Design of Experiments

Quick analysis before going to detailed models

- - Create Plot task for visualizations
 - Trade-off studies at system-level
 - Integrate with System Composer

Tools for Design Optimization

Generic desigr)
optimization	

MATLAB

Statistics & Machine Learning Toolbox

Optimization Toolbox

Global Optimization Toolbox

Parallel Computing Toolbox

Domain-specific design optimization

Simulink Design Optimization

Model-Based Calibration Toolbox

Antenna Toolbox

Answers for the Challenges of Design Optimization

Difficult to set up

- MATLAB workflow integration
- Optimize task
- Problem-based optimization
- Multiobjective solvers

Time consuming

Difficult to analyze results

- surrogateopt & paretosearch
- Starting with existing solutions
- Surrogate models
- Parallel computing

- Create Plot task
- Many plot types
- Pareto plots
- Progress plots

Do More

Try the Optimize task

tutorial

<u>video</u>

alution	biective/alue - Minimize objectiveEcolucing Emincon solver	
olution, o	ojectivevalue = Minimize objectiver ch using fmincon solver	
Specify proble	em type	
Objective	Image: LinearImage: LinearImage: LinearImage: LinearImage: LinearImage: LinearExamples: $f(x, y) = x/y, f(x) = \cos(x), f(x) = \log(x), f(x) = e^x, f(x) = x^3,$ Solve $F(x) = 0,$ Image: LinearImage: Linear	
Constraints	Unconstrained Lower bounds	
	Linear equality Second-order cone Noninear Examples: $x \ge 0, x \le 2, \cos(x) \le 0, x^2 = 0$	
Solver	(fmincon - Constrained nonlinear minimization (recommended)	
Select problem	m data	
Objective fun	nction Local function 🔻 objectiveFcn 🔻 New 🔞	
Initial point (x	x0) x0 v	
Constraints	Lower bounds. All bounds the same V 2	
Constituints		
	opper bounds and same V 2 2 2 x	
	Nonlinear Local function 🔻 constraintFcn 🔻 New	
	+ Function inputs	
	Optimization input optiminput •	
	Fixed input: R T	
Specify solver	r options	
Display progre	855	
Text display	Final output	
Plot	Current point Evaluation count CObjective value and feasibility Objective value	

Try problem-based optimization

Workshop using MATLAB Online Last hour of Expo Day 2

Learn More

Getting Started			
Optimization Toolbox	<u>Overview</u>	<u>Video</u>	Documentation
Global Optimization Toolbox	<u>Overview</u>	<u>Video</u>	Documentation
Cheat Sheets			
Training: Optimization Techniques in MATLAB			

How-To Videos		
Mathematical Modeling with Optimization	Master Class: Solving Optimization Problems with MATLAB	
Optimize Live Task	Multiobjective Optimization	
Surrogate Optimization	Design Optimization with MATLAB	
Global Search	MultiStart Optimization	

Basics
Nonlinear Programming
Linear Programming
Integer Programming
Quadratic Programming
Genetic Algorithm
Least Squares and Nonlinear Systems of Equations

Examples		
Flight Path Optimization	Traveling Salesman Problem	
Production Planning	Portfolio Optimization	
Minimizing Electrostatic Energy	Optimal Dispatch of Power Generators	
Antenna Design	Circuit Component Selection	

Thank you

© 2021 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.