MathWorks Toolchain for Low-Velocity Maneuvering Development at General Motors

GM

Alon Davidi

Jonathan Naor

The last hundred meters of an autonomous drive entail unique challenges: there is variability in direction (reverse, three-point turns, etc.) there are often no road markings, no GPS signal, and no map. This is where a Self-Driving Car is at

its most autonomous.

The goal of the Low Velocity Maneuvering (LVM) team at General Motors is to drive the vehicle in GPS-denied environments with high accuracy, to enable a variety of autonomous features.

In this talk we review our LVM development cycle, emphasizing MathWorks tools utilization, starting from the architecture management, models base design development, requirements & testing coverage, MIL, SIL, HIL simulations and code generation for multiple platforms.

Development Process Motivation

- Fast development cycle: fast transition from proof of concept to production-mature software
- Utilize the best of all worlds for simulation, development, validation and deployment:
 - **CarSim** for precise vehicle dynamics
 - Unreal-based fisheye photo-realistic image rendering
 - **ROS2** for visualization and debugging
 - **dSpace** for real-time validation
 - Simulink for Model-based design

Simulink/CarSim co-simulation (SIL)

In-house full vehicle system simulation

RT HIL/Vehicle Validation – co-simulation (Simulink, Dspace & CarSim / Vehicle)

Unit-test process flowchart using Test Manager for requirements coverage analysis

Model and Code validation – "white box"

Model Validation "Black box" (Monte-Carlo)

System-level module in the loop verification using Simulation Manager

MC Generator				- 0	\times
Add Remove			Load File	Generate File Run	
Scenario Path	Scenario File	Run Time	Iterations	Run Mode	
		220	10	rapid	<u>_</u>
		220	10	rapid	
		80	10	rapid	
		80	10	rapid	
		30	10	rapid	-

	Normal Normal Normal Normal Normal	-4 28.2000 3.1416 1	0.2000		10000	double
	Normal Normal Normal	3.1416		-10000	10000	
	Normal Normal		0.0175			double
	Normal	1	21011-0	-10000	10000	double
			0.1500	-10000	10000	double
		1.2000	0.1800	-10000	10000	double
	Normal		0.5000	0	1	boolean
	Normal	33	0.1500	-10000	10000	single
	Normal	-7.5000	0.1500	-10000	10000	single
	Normal	2	0.3000	-10000	10000	single
	Normal	-1.5708	0.0175	-10000	10000	single
	Normal	2	0.3000	-10000	10000	single
	Normal	0.8000	0.1200	-10000	10000	single
	Normal	0.0500	0.0075	-10000	10000	single
	Normal	4.7000	0.7050	-10000	10000	single
	Normal	0.9400	0.1410	0.9150	1	single
	Normal	0.9700	0.1455	0.9150	1	single
	Normal	33	0.1500	-10000	10000	single
	Normal	-45	0.1500	-10000	10000	single
	Normal	2	0.3000	-10000	10000	single
	Normal	-1.5708	0.0175	-10000	10000	single
	Normal	1.8000	0.2700	-10000	10000	single
	Normal	0.8000	0.1200	-10000	10000	single
	Normal	0.0500	0.0075	-10000	10000	single
	Normal	4.7000	0.7050	-10000	10000	single
	Normal	0.9400	0.1410	0.9150	4	sinnia
al Comp	ponent Active	MaxMin	Average Medi	ian Last Valu	ue Run Time	Sigma

FILE SIM	top Job Simulation Details	Open Selected Show Results	scatter surf	Reuse Window OPTIONS	Grid List	0	PLOT PROPERTIES		0
Simulations Run ID	Figure 1 ×		Progress	Elapsed Time	Machine	0	PEOTPHOPENIES		
19	Completed with warn	ings	100%	00:01:39	mastine				
20	Completed with warn		100%	00:01:39					
21	Completed with warn	-	100%	00:01:08					
22	Completed with warn	•	100%	00:01:12					
23	Completed with warn	-	100%	00:01:11					
24	Completed with warn	ings	100%	00:01:08		-1			
25	Completed with warnings		100%	00:01:13		-1			
26	Completed with warn	ings	100%	00:01:13		-1			
27	Completed with warn	ings	100%	00:01:12		-			
28	Completed with warn	ings	100%	00:01:07					
29	Completed with warn	ings	100%	00:01:15					
30	Completed with warn	ings	100%	00:01:17					
31	Completed with warn	ings	100%	00:01:21					
32	Completed with warnings		100%	00:01:19					
22	Completed with warnings		1000	00-01-16					
SIMULATION DET	TAILS					0	1		
Run ID Status	8 Completed wi 100	Parameters Timing	Info Diagnostics						
Progress		Туре	Name	Value					
Elapsed Time	00:10:45	Model Parameter Model Parameter	StopTime UpdateModelRe	220 eferenceTar; IfOutC	MDate	- 1			
		Madel Decemptor		forenos Tore userale					

Adding vision perception to system simulation

Photorealism

Requirements: Fisheye Image Generation

Requirements: Simulated Weather Effects

Requirements: Ground Truth

Requirements: Recording and Visualization

Photorealism (Unreal Engine Interface)

Interface with Unreal Engine enables state of the art photorealistic images in a variety of scenarios

Fisheye Image Generation

Unique ability to generate fisheye images from Unreal (configurable intrinsics and extrinsics)

Ground Truth

Generate route in MATLAB / Simulink and execute in Unreal

Recording & Visualization

Broadcast sensor data and ground truth in standard ROS2 messages; utilize debugging and visualization tools

CODD DEA	M3: Curren	n fr. Phates and in
Contraction on the last	THE WATE	

Ps: 3313, Matches: 98

Ш

UDUIILU 10.04 L13

Wrap up

Using MATLAB/Simulink we were able to quickly:

- Manage
 - Architecture management using System Composer
- Develop
 - Control System
 - Vision Perception System
- Validate
 - Requirement-based and back-to-back testing using Simulink Test
- Deploy
 - Code generation

Next Steps:

- Unify control and vision development platforms
- Move to Adaptive AutoSAR architecture

MathWorks and GM Collaborative Effort

Thank you!