

Model-based Development of Low-speed Vehicle Motion Control Algorithms for Automated Driving Functions

Dr. Marco Wegener, Hemanth Chakravarthy

Agenda

ZF Introduction

- 2. Overview Automated Driving Systems
- **3** Model-based Development of Vehicle Motion Control Algorithms
- **4** Development Results
- **5** Conclusion & Outlook

01 ZF Introduction

.....................

ZF Technology Domains

ZF Product Portfolio for Automated Driving

Overview Automated Driving Systems

Evolution of Automated Driving Systems

.....

Scalable System Architecture Example: Parking Functions

- Basic Park Aid
 - Front & Rear Ultrasonic Sensors
 - Rear Camera
- Semi and Fully Automated Park Assist (Object-based)
 - Front & Rear Ultrasonic Sensors
 - Rear Camera
 - Corner Radars
- Fully Automated Park Assist (Object & Marking-based) Remote & Valet Parking
 - Front & Rear Ultrasonic Sensors
 - Corner Radars
 - Surround Cameras

03 Model-based Development of Vehicle Motion Control Algorithms

Target Functional Architecture

Model-Based development Non-Model-based (Manual Coding)

Ego Vehicle Localization

Development Goals

Trajectory Planning

- Flexible to any potential perception layer interface
- Capable of all kind of low-speed maneuvers (traffic jam, urban driving, parking)

Vehicle Motion Control

- Combined lateral and longitudinal control
- Able to handle actuator constraints and time delays
- High precision

• Tooling

- Time-efficient implementation & testing with small agile development teams
- Setup of a simulation framework
- Establish toolchain to derive Key Performance Indicator driven function performance reports to track progress

Challenges of Algorithm Design

Trajectory Planning

- Indefinite number of potential planning algorithms
- Many concepts fail to consider:
 - Passenger car dynamic constraints
 - Multi-stroke path planning
 - Reproducibility requirement

- Re-use of well-established planning algorithm desired
- Need to pick an appropriate concept right from the beginning to meet mass-production requirements

Vehicle Motion Control

- High precision within cm range required
- Odometry of mass production vehicles is inaccurate close to standstill
- Actuators delay algorithm requests by low-pass filter or dead time behavior (e.g. braking down to standstill)

Benefits of Model-based Development for Automated Parking

Trajectory Planning:

- **Tools:** Automated Driving & Navigation Toolboxes provide a comprehensive set of different path planning algorithms including associated functionalities of:
 - Path Interpolation
 - Optimization
 - Visualization
 - Path Metrics
- **Support:** MathWorks engineering team support to figure out the pros & cons of each planning concept and to choose a concept that fits best to the intended application
- **Collaboration:** Engineering teams from ZF and Mathworks have mutually benefitted from monthly workshops to understand each other's need and therefore to improve their products

Benefits of Model-based Development for Automated Parking

Vehicle Motion Control:

- Ready-to-use toolboxes as the Control System & Model Predictive Toolboxes provide advanced control algorithms capable of
 - Predicting control errors by taking into account planned trajectory and future vehicle motion
 - Consideration of actuators limitations & time delays
 - Comfort & safety requirements can be fulfilled already by design resulting in less tuning effort
- Simple integration into rapid-prototyping ECUs by using Simulink Coder and calibration tools for early vehicle tuning sessions

Tooling:

- Simulink enables function simulation at an early development stage and low-effort integration in simulation tools
- Built-in functions allow quick development of function-specific data analysis and performance validation frameworks

04 Development Results

Established Scenario-driven Development & Evaluation Process

Design & Implementation

Closed-loop Simulation Framework

Vehicle-level Validation

KPI-based Performance Evaluation

Example Maneuver: Two-stroke Urban Maneuvering

Model-based Development of Automated Driving Functions

7F

Realized Workflow for Continuous Performance Evaluation

05 Conclusion & Outlook

.

Conclusion

Summary:

- ZF's ADAS function development is constantly evolving with new functions, each starting with a rapid-prototyping approach in the early project phases and then smoothly transitioning them into mass-production ready solutions
- Model-based software development is seen as an important building block for time and cost-efficient development processes
- Ready-to-use toolboxes by Mathworks enabled the development team to accelerate the development of Automated Driving functions

Outlook:

- Automated Driving functions will be further developed to cover extended use-cases and increased autonomy
- ZF will continue to benefit from rapid-prototyping capabilities enabled by additional toolboxes for localization, navigation and V2X communication

SEE. THINK. ACT.

© ZF Friedrichshafen AG