MATLAB EXPO 2021

Getting started with AI in MATLAB

Dr Julia Hoerner

Al Academic Liaison Manager/ Europe

jhoerner@mathworks.com

Amith Kamath

Al Academic Liaison Manager/ Asia-Pacific

akamath@mathworks.com

In this workshop we will ...

Set-Up Instructions

- Set up a MathWorks account if you don't have one
 - please use Google Chrome browser
 - go to https://www.mathworks.com/mwaccount/
- Copy the materials via the MATLAB Drive
 - go to https://drive.matlab.com/sharing/bac1e750-8f81-411e-bc94-9db1d5195e77
 - Click on Add to my Files/Copy Folder
 - You should see a separate folder saying "Owned By: Me" (on the right-hand side)
- Activate the workshop license and launch MATLAB Online
 - go to https://www.mathworks.com/licensecenter/classroom/MATLAB_EXPO_8726324/
 - click Access MATLAB Online
 - log in using your MathWorks account

Al in Research and Industry

University of Twente: Augmented Reality of blood flow

Automatic Defect

Detection AIRBUS

DKFZ Heidelberg: Deep Learning for Tumor
Detection

Oversteering Detection

Seismic Event Detection

MathWorks Focus on Deep Learning and AI for Engineering and Science

Predictive Maintenance

- Bearing Prognosis
- Pump Fault Diagnosis

Predictive Maintenance Toolbox™

Land-Use Classification

· Semantic Segmentation for Multispectral Images

Image Processing Toolbox™

Lidar

- Lidar Point Cloud Semantic Segmentation

Lidar Toolbox™

• 3-D Object Detection Using PointPillars

Radar

- Radar Waveform Classification
- · Pedestrian and Bicyclist Classification

Phased Array System Toolbox™

Wireless Communications

- Modulation Classification
- Detect WLAN Router Impersonation

Communications Toolbox™

Reinforcement Learning

- · Train Biped Robot to Walk
- PMSM Motor Control

Reinforcement Learning Toolbox™

Computational Finance

 Machine Learning for Statistical Arbitrage

Financial Toolbox™

Robotics

 Avoid Obstacles using Reinforcement Learning

Robotics System Toolbox™

Automated Driving

Deep Learning Vehicle Detector

Occupancy Grid with Semantic Segmentation

Automated Driving Toolbox™

Visual Inspection

Manufacturing Defect Detection

Anomaly Detection for Cloth Manufacturing

Image Processing Toolbox™

Audio

Speech Command Recognition

Cocktail Party Source Separation

Audio Toolbox™

Medical Imaging

- 3-D Brain Tumor Segmentation
- Breast Cancer Tumor Classification

Image Processing Toolbox[™]

What is AI?

Artificial Intelligence: The ability of a computer to perform tasks commonly associated with intelligent beings like learning or problem-solving.

Machine Learning: Learning a task from data without relying on a predetermined equation. (User may need to provide data features.)

Deep Learning: Learning from raw data without predetermined features using neural networks with many layers

Objective:

Easy and accurate computation of dayahead system load forecast

Objective:

Train a classifier to classify human activity from sensor data

Data:

Inputs	3-axial Accelerometer 3-axial Gyroscope
Outputs	⅓ ⅓ ⅓ —

Objective:

Given data for engine speed and vehicle speed, identify clusters

Machine Learning and Deep Learning Datatypes

mean_BloodPressure

Image

Signal

Numeric

Under 30	Q1	6	123.17	79.667
Under 30	Q2	3	120.33	79.667
Under 30	Q3	2	127.5	86.5
Under 30	Q4	4	122	78
30-39	Q1	12	121.75	81.75
30-39	Q2	9	119.56	82.556
30-39	Q3	9	121	83.222
30-39	Q4	11	125.55	87.273
Over 40	Q1	7	122.14	84.714
Over 40	Q2	13	123.38	79.385
Over 40	Q3	14	123.07	84.643
Over 40	Q4	10	124.6	85.1

GroupCount

WeightQ

AgeCat

Text

Al Workflow

Data Preparation

Data cleansing and preparation

Human insight

Simulationgenerated data

Al Modeling

Model design and tuning

Hardware accelerated training

Interoperability

Simulation & Test

Integration with complex systems

System simulation

and validation

Deployment

Embedded devices

Enterprise systems

Edge, cloud, desktop

Iteration and Refinement

Practical Example: Classify Heart Condition

ECG characteristics (for ML):

*Dataset was curated for 2017 PhysioNet challenge: "normal" ECG data was obtained from the MIT-BIH Normal Sinus Rhythm database available at https://physionet.org/content/nsrdb/1.0.0/, and "abnormal" from MIT-BIH Arrythmia database at https://www.physionet.org/content/mitdb/1.0.0/

ECG transformation (for DL):

ML Exercise: Classify Heart Condition

Goal: classify heartbeat signal into normal and abnormal using machine learning

To Do:

- Go to *Exercises* folder
- Open Ex1_ECG_ML_FeaturesStats.mlx and follow along with the instructor

Beyond traditional Machine Learning

Machine Learning Deep Learning Neural Networks with many Hidden Layers

- Learns directly from data
- More Data = better model
- Computationally intensive
- Not interpretable

What is Deep Learning?

- DL uses neural networks and was inspired by the human brain
- DL neural networks consist of
 - Neurons arranged in layers
 - Layer combinations
 - Learnable parameters (weights and biases)
 - Hyperparameters (e.g. learning rate, number of epochs, mini batch size, etc.)
- Most commonly, DL is used for:
 - Classification: Output is categorical (or discrete)
 - Regression: Output is numerical (or continuous)
 - (Can also be used to generate things, e.g. GANs)

What is Deep Learning?

- Layers are like blocks
 - Stack on top of each other
 - Replace one block with a different one
- Information is usually passed in a forward pass (but can also be passed backwards)
- Weights and biases are adjusted in a backward pass (backpropagation) using a gradient descent
- There are different networks for different applications (e.g. CNNs for images, RNNs for sequential data)

Signal Processing Architectures Feature Engineering Recurrent Neural Network (RNN) (e.g. Long Short-Term Memory (**LSTM**) Networks)

Quick overview of Convolution Neural Networks

- CNNs are typically used to classify images
- CNNs extract features of different granularities
- A lot of <u>pretrained CNN models</u> exist in MATLAB
- A very good starting point to use with <u>transfer learning</u>

DL Exercise: Classify Heart Condition

Goal: classify heartbeat signal into normal and abnormal using deep learning

To Do:

- Go to *Exercises* folder
- Open Ex2_ECG_DL_CNN.mlx and follow along with the instructor

The example using LSTM can be found <u>here</u>.

Al Workflow

Data Preparation

Data cleansing and preparation

Human insight

₽

Simulationgenerated data

Al Modeling

Model design and tuning

Hardware accelerated training

Interoperability

Simulation & Test

Integration with complex systems

— x System verification

—
✓ and validation

Deployment

Embedded devices

Enterprise systems

Edge, cloud, desktop

Iteration and Refinement

Al Workflow

Iteration and Refinement

Signal Labeler + Audio Labeler

Experiment Manager

ONNX

| March | Marc

Image Labeler
+
Video Labeler

Cloud Data Wo

Cloud Data Workflows for Scientists and Engineers (DataBricks & AWS)

Deploying AI on PLC (Plenary)

Biggest Challenge: Use Machine or Deep Learning?

Choose the right approach based on your resources

Resources for Learning

Get Free Online (hands-on) Training

MATLAB Onramp

Get started quickly with the basics of MATLAB®.

Details and launch

Simulink Onramp

Get started quickly with the basics of Simulink®.

Details and launch

Reinforcement Learning Onramp

An interactive introduction to reinforcement learning methods for control problems.

Details and launch

Deep Learning Onramp

Get started quickly using deep learning methods to perform image recognition.

Details and launch

Control Design Onramp with Simulink

Get started quickly with the basics of feedback control design in Simulink.

Details and launch

Signal Processing Onramp

An interactive introduction to practical signal processing methods for spectral analysis.

Details and launch

Image Processing Onramp

Learn the basics of practical image processing techniques in MATLAB.

Details and launch

Machine Learning Onramp

An interactive introduction to practical machine learning methods for classification problems.

Details and launch

Deep Learning Onramp

Get started quickly using deep learning methods to perform image recognition.

Details and launch

Stateflow Onramp

Learn the basics of creating, editing, and simulating state machines in Stateflow.

Details and launch

Resources for Teaching

- Teach with MATLAB and Simulink
- Teaching Science with MATLAB
- Virtual Labs & Projects
- Online teaching
- Support with developing individual AI courses, please contact us:

jhoerner@mathworks.com or akamath@mathworks.com

Teach with MATLAB and Simulink

MATLAB EXPO 2021

Thank you

© 2021 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.