

Fighting fires and saving lives with MATLAB

Travis F. Collins, PhD Analog Devices, Inc.

MATLAB EXPO 2021

Outline

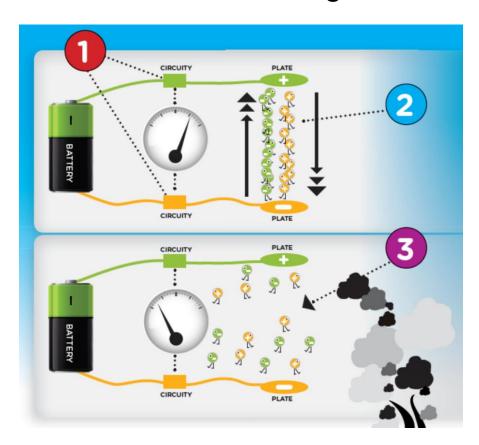
- Problem statement
 - Existing problems of house fires
 - Update to UL 217/UL 268 smoke detector standards
 - Optical sensor technology
- Smoke Detector Design Methodology
 - Data collection campaign
 - Test driven development with MATLAB Unit Test Framework
 - Leveraging Parallel Computing Toolbox
 - Generating Embedded Code
 - MATLAB project as a product
- Summary

Fire Detection – Saving Lives

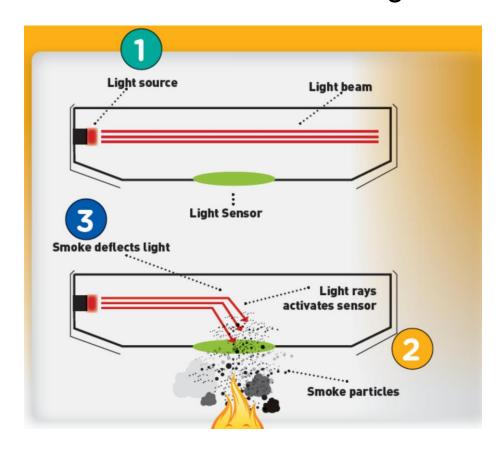
Properties without working smoke alarms

Smoke Alarms present but disabled due to false alarms

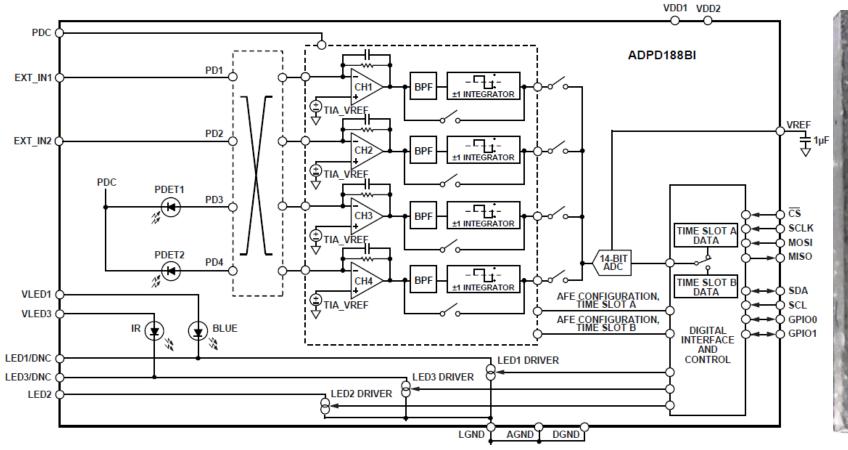
To escape a fire than in 1970's due to advances in synthetic building materials

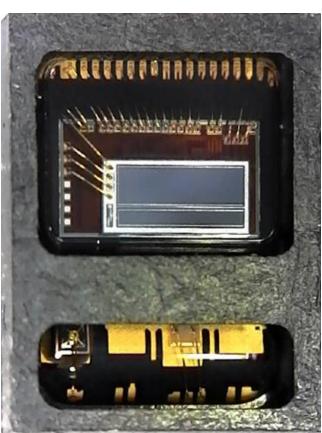

Driving increasing regulatory requirement for more reliable smoke detection

Major Smoke Detector Regulations


- US and Canadian
 - UL 268 Smoke Detectors for Fire Alarm Systems
 - 7th edition in effect 30th June 2021
 - UL 217 Smoke Alarms
 - 8th edition in effect 30th June 2021
 - > Updates to flaming polyurethane and cooking nuisance (hamburger) test
- European
 - EN 14604 Smoke alarm devices (2006)
 - BS EN 54 Fire detection and fire alarm systems (2015)
 - Part 29: Multi-sensor fire detectors Point detectors using a combination of smoke and heat sensors
- International
 - ISO 7240 Fire detection and alarm systems (2018)
 - Part 7: Point-type smoke detectors using scattered light, transmitted light or ionization
 - Chinese standard for point-type smoke detectors follows 2003 edition of this standard

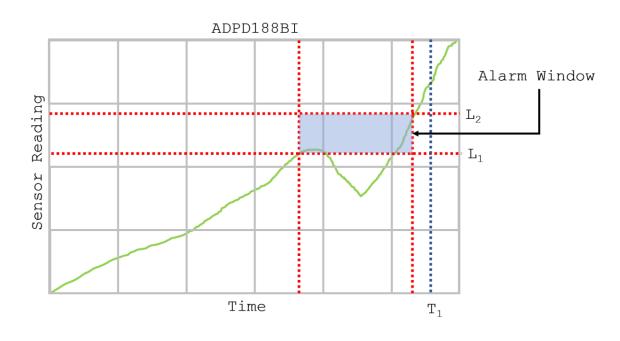
Typical Smoke Detector Technology Today


Ionization – Flaming Fires



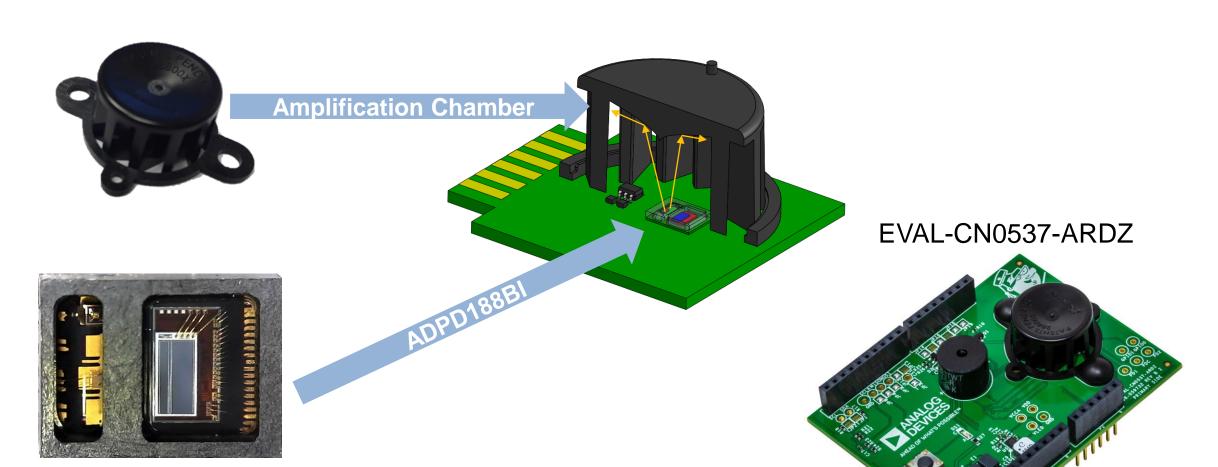
Photoelectric – Smoldering Fires

ADPD188BI Integrated Smoke Sensor



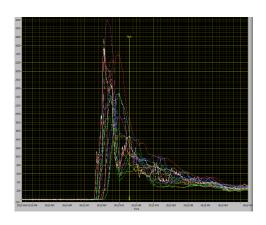
Photodiode and ADPD1080 AFE

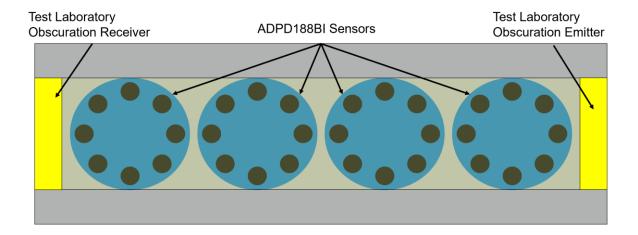
Blue and IR LEDs


UL 217/UL 268 Motivations & Specification

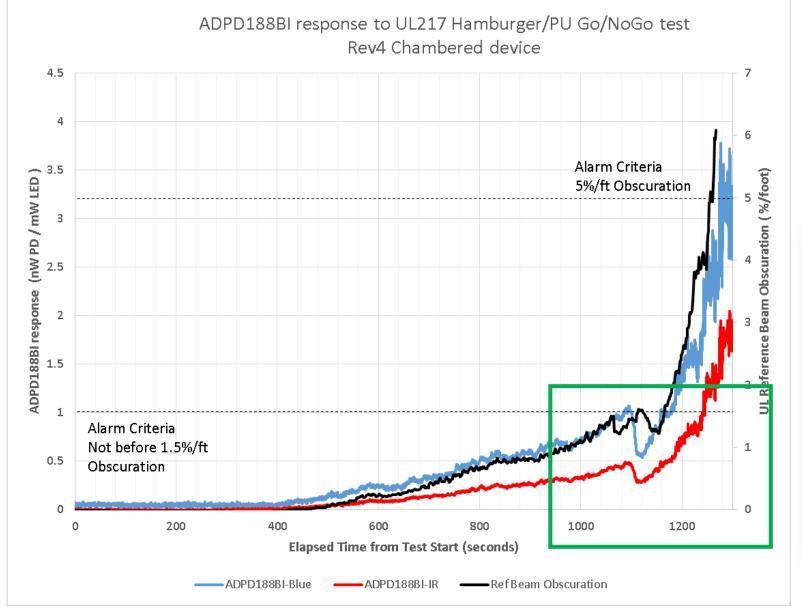
- UL 217/UL 268
 Specification to cut down false alarms
 - Smoke vs non-Smoke
 - Real alarm vs
 Nuisance alarm
- Research and understand how the ADPD188BI responds to smoke events

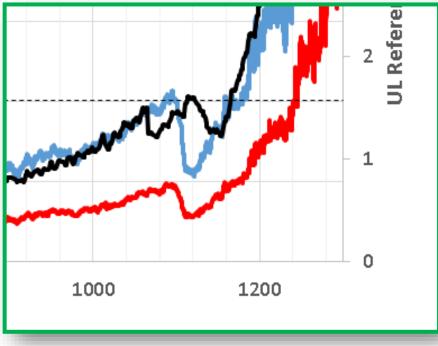
Fire Source	Alarm Time Spec. Alarm Obscuration Sp	
Smoldering Wood		before 10%/foot
Smoldering PU		before 12%/foot
Nuisance		NOT before 1.5%/foot
Paper	Less than 4 minutes from test start	
Flaming PU	Less than 4 minutes from test start	before 5%/foot
Flaming Wood	Less than 4 minutes from test start	
Nuisance+PU	Less than 4 minutes from test start	NOT before 1.5%/foot

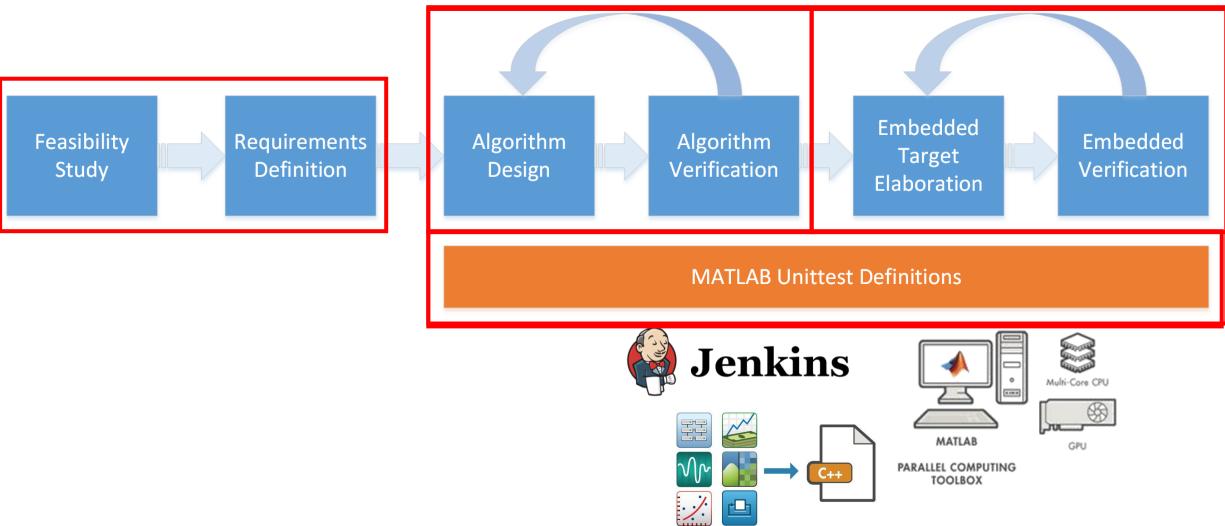

Smoke Detector Evaluation System



CN0537 UL 217/UL 268 Test Datasets


- Data collected at Occupational Safety and Health Administration(OSHA) recognized testing facilities <u>Intertek</u> and <u>Underwriters</u> <u>Laboratory</u>(UL)
- EVAL-CN0537-DATA Datasets contain:
 - Reference obscuration/humidity/CO2 levels of UL 217/UL 268 test scenarios
 - High sample rate sensor data from multiple ADPD188BI parts across all tests
 - 1000+ unique part specific datasets
- Test data covers UL 217/UL 268 specific tests relating to smoke sensing performance
- Data can be used to further refine algorithms, create custom algorithms, or complement existing test harness


UL Section	UL 8 th Edition Test	
42	Sensitivity	
51.2	Paper Fire	
51.3	Wood Fire	
51.4	Flaming PolyUrethane	
52	Smoldering Smoke	
53	Smoldering PolyUrethane	
54	Cooking Nuisance	
	UL 9 th Edition Test	
54	Go/No Go Cooking Nuisance	


UL217/UL 268 Nuisance Test

Design Methodology: Test driven development

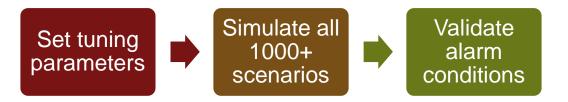
CN0537-Product

MATLAB Unit Tests

Mapping requirements to code and testing to requirements

- Took requirements from UL 217/UL 268 standard and implemented them directly in code as matlab.unittest.constraints
- Leveraged test parameterization for data source test case generation
- Easily describe data tested, checks performed, and extend analysis

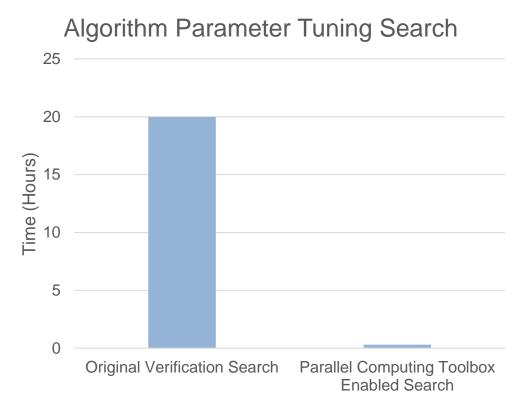
```
methods (Test)
    function testConfiguration(testCase, ...
            testIndx, a, b, c, d, e, f, g)
        import matlab.unittest.constraints.islessThan
        import matlab.unittest.constraints.IsGreaterThan
        % Extract test data
        testCase.index = testIndx;
        testCase.test mode = mode;
        x = testCase.smoke data(testIndx).b;
        t = testCase.smoke data(testIndx).tl;
       %% Pass through algorithm
        [cs time, alarm time indx] = smoke detector(x, t, ...
            a, b, c, d, e, f, g); %#ok<*ASGLU>
       %% Validate
       switch testCase.smoke data(test index).test info.smoke source
            case {'Flaming PU'}
                testCase.assertThat(cs time, IsGreaterThan(0), 'alg obsc min');
                testCase.assertThat(cs time, IsLessThan(5), 'alg obsc max');
                testCase.assertThat(alarm time indx, IsLessThan(240), 'alg atime');
            case { 'Paper', 'Wood Fire' }
                testCase.assertThat(cs time, IsGreaterThan(-Inf), 'alg obsc min');
                testCase.assertThat(cs time, IsLessThan(Inf), 'alg obsc max');
                testCase.assertThat(alarm time indx, IsLessThan(240), 'alg atime');
```

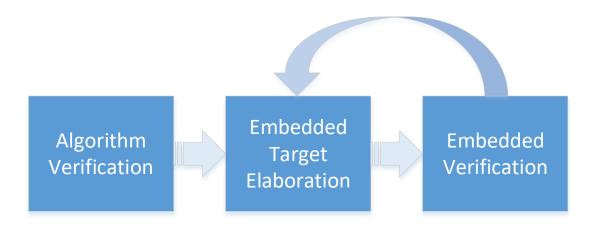

Extending Unit Tests

Unit tests are not just pass fail

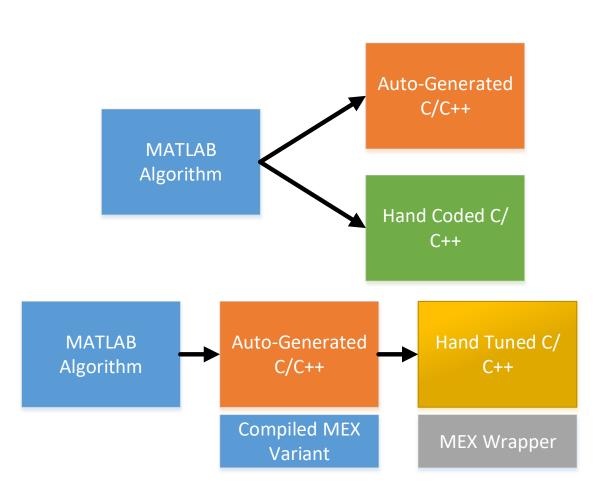
- Added diagnostic reporting for performance analysis
 - Done through custom plugins
- Further extending with MATLAB Report Generation
- MATLAB CI control and generated artifacts easily integrate with Jenkins MATLAB plugin

```
%% Custom Unit Test Plugin
classdef details recording plugin < matlab.unittest.plugins.TestRunnerPlugin
    %% Define Fields To Collect
    properties (Constant, Access = private)
        ObsObscLvlField = 'alg alarm time obsc lvl';
        TargetObscLvlField = 'spec alarm time obsc lvl range';
        ObsAlarmTimeField = 'alg alarm time';
        TargetObsAlarmTimeField = 'spec alarm time';
        TestInfoField = 'test info';
        ModeField = 'mode'
    end
        %% Collect Assertion Results
        function reactToAssertion(plugin, evd, resultDetails)
            if strcmp(evd.TestDiagnostic, 'alg obsc min')
                resultDetails.append(pluqin.TargetObscLvlField, {evd.Constraint.FloorValue})
            elseif strcmp(evd.TestDiagnostic, 'alg obsc max')
                resultDetails.append(plugin.ObsObscLvlField, {evd.ActualValue})
                resultDetails.append(plugin.TargetObscLvlField, {evd.Constraint.CeilingValue})
            elseif strcmp(evd.TestDiagnostic, 'alg atime')
                resultDetails.append(plugin.ObsAlarmTimeField, {evd.ActualValue})
                resultDetails.append(pluqin.TarqetObsAlarmTimeField, {evd.Constraint.CeilingValue})
                resultDetails.append(plugin.TestInfoField, {evd.Source.smoke data(evd.Source.index).test info})
                resultDetails.append(plugin.ModeField, {evd.Source.test mode})
            end
end
```

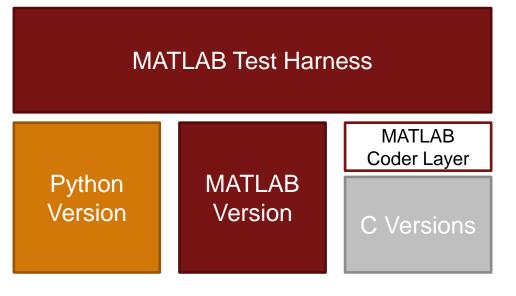

Algorithm Tuning and Exploration


- Easy integration with testing framework
 - Test parameterization allows for simple multiplicative dimensioning
- Went from 20 hours to 20 minutes
- Mindsets change when you don't have to wait hours and hours for a simulation
- Switch from waiting to exploring

```
classdef UL217Tests < matlab.unittest.TestCase
  properties (TestParameter)
    testIndx = enumerateDataSet()
    implementation = {'matlab', 'c', 'python'};
    a = {1};
    b = {45};
    c = {4};
    d = {128,123,11};
    e = {0.1};
    f = {0.2};
    g = {1,2,3};
    end


methods(Test)
    function test_UL_and_Intertek_Configuration(testCase, ...
    testIndx, implementation, a, b, c, d, e, f, g)</pre>
```


Generating Embedded Code


- Port exact algorithm to embedded hardware without functionality or precision loss
- Minimize mathematical operations to reduce power requirements on hardware
- Connect driver API and requirements to algorithmic code
- Clear communication and validation between driver (embedded) engineers and algorithmic engineers
- Parallel Computing Toolbox also allows for parallel runs with mex'ed code

Software Testing harness

- Fully integrated testing harness across implementations include MATLAB/Python/C
 - Allows for direct comparison as the algorithm is moved embedded
- The harness itself is written in MATLAB and utilizes MATLAB Coder to interface with C and MATLAB's standard python integration
- Testing harness generates plots to help visualize the margins with which the research fire tests comply with UL 217/UL 268

```
%% Pass through algorithm
switch implementation
  case 'matlab'
    [cs_time, alarm_time_indx] = smoke_detector(x, t, ...
        a, b, c, d, e, f, g);
  case 'c'
    [cs_time, alarm_time_indx] = smoke_detector_c_wrapper_mex(x, t, ...
        a, b, c, d, e, f, g);
  case 'python'
    pa = py.python.smoke;
    [cs_time, alarm_time_indx] = pa.smoke_detector(x, t, ...
        a, b, c, d, e, f, g);
end
```


UL 217/UL 268 Testing Results

- Tested and verified UL 217 (8th and 9th Ed.) and UL 268 (7th Ed.) smoke detection algorithm (.c code)
- Complete documentation can be found on wiki.analog.com
 - Note Test and verified with the current ADPD188BI, smoke chamber, and algorithm.
- Able to validate ahead of test facility by feeding data into test harness between tests

Smoke Alarms [UL 217:2015 Ed.8+R:23Nov2016]

SECTION 1

SUMMARY

Intertek wishes to inform you that we have completed the research UL217 8th Ed performance testing on your EVAL-CN0537-ALGO Smoke sensor. The following list of tests were performed and resulted in a passing result.

TEST	<u>UL 217 8th</u>	<u>Result</u>
Directionality	43	Pass
Sensitivity	42	Pass
UL – Paper Fire	51.2	Pass
UL – Wood Fire	51.3	Pass
UL – Flaming polyurethane Foam Test	51.4	Pass
UL – Smoldering Smoke Test	52	Pass
UL – Smoldering Polyurethane Foam Test	53	Pass
UL – Cooking Nuisance Smoke Test	54	Pass
UL - Go/No Go Flaming Polyurethane Foam Test	54	Pass
Velocity-Sensitivity Test	44	Pass
Variable Ambient (0 & 49c)	62	Pass
Humidity	63	Pass

CN0537 Reference Design Offerings

Algorithm

- Software
- CN0537 Source Code including UL 217/UL 268 Detection Algorithm (.c)
- MATLAB UL 217/UL 268 Projects
- Data
- UL 217/UL 268 Test Dataset Files
- Documentation
- Algorithm Documentation
- Test Datasets User Guide
- MATLAB User Guide
- Support
- 10 hours of phone support
- Additional paid support available if required

EVAL-CN0537-ALGO

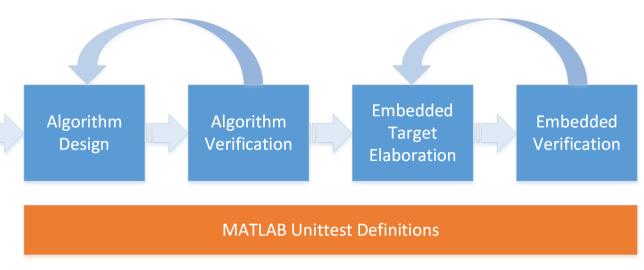
Data

- Data
- UL 217/UL 268 Test Datasets Files
- Software
- CN0537 Source Code (excl. detection algorithm)
- Documentation
- Test Datasets User Guide

EVAL-CN0537-DATA

Hardware

- Hardware
- CN0537 Reference Design
- ADICUP3029 Microcontroller Board
- Software
- Embedded UL 217/UL 268 algorithm (.hex)
- ADPD188BI no-OS driver
- Documentation
- Circuit Note
- CN0537 User Guide
- UL 217/UL 268 Test Results (Intertek)


EVAL-CN0537-ARDZ EVAL-ADICUP3029

Summary

Model-Based Design aka

Test Driven Development

- MATLAB frameworks and advanced tools provide:
 - Consistent validation environment from simulation to production
 - Spend time solving problems rather than waiting for simulations
 - Delivering MATLAB code as a product allows engineering customers to move quickly and tune for their unique cases
- MATLAB User Story available at MathWorks.com
- Please visit our booth for more information

MATLAB EXPO 2021

Thank you

© 2021 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.