

Model-Based Calibration For Automotive Traction Motors

Daniel Berry

Technical Specialist – Electric Drive Integration May 5, 2021

Outline

- Motivation for use of Model-Based Calibration (MBC)
- Overview of MBC
- Step by Step workflow with results
- Wrap up / future work

Motivation For MBC

- With 30 new electric vehicles planned to launch globally by 2025¹, General Motors is continually looking for ways to improve and optimize the process it uses for calibration of electric drive systems
 - Improved speed both in required calibration time and in data processing
 - A scalable and standardized workflow
 - Improved data quality checks to ensure first time quality

general motors

1 - https://www.gm.com/electric-vehicles.html

MBC As A Solution

- The Model-Based Calibration Toolbox can be used to address many of these areas for improvement.
 - Utilizing built in optimization features for both Design of Experiment (DOE) definition and model fitting of results reduces computation time vs. full factorial type searches.
 - Having a standardized tool and workflow ensures consistency between multiple users and enforces a consistent process.
 - Implementing various "check points" in the process ensures the quality of the eventual product.
- Using MBC Toolbox, GM electric drive calibration was able to achieve similar results as with in house tools; while improving many of the areas mentioned above.

Model-Based Calibration Workflow and Results

- Overview of electric drive calibration
- Detailed workflow of MBC
 - DOE
 - Data Modeling
 - Calibration
 - Implementation
 - Results
- Future Work

Electric Drive Control System Overview

Electric Drive Control System Overview

How to Determine the Optimal Current Command Generation For Each Speed, Torque, and Voltage Combination?

general motors

Basic Problem Of Electric Machine Calibration

Minimize Current

 $T_e = \frac{3}{2} P(\lambda_d i_q - \lambda_q i_d) \longleftarrow$ Maximize Torque

 $1i_d^2 + i_q^2 < I_{Limit}$

 $V_q = r_s i_q + w_e \lambda_d + \frac{d\lambda_q}{dt}$

 $V_d = r_s i_d - w_e \lambda_q + \frac{d\lambda_d}{dt}$

Consider a typical automotive traction motor requirements:

-300Nm Torque -10,000RPM Max Speed -250 – 450 Vdc Operating Voltage

Even assuming a relatively coarse calibration space of:

-10Nm Increment -250RPM Speed Increments 50Vdc Voltage Increments

6000 Points that need to be calibrated

 $\lambda_{dq}(i_{d,}i_{q}) \blacktriangleleft$

For all Parameter Variation

Voltage

Constrained By

Model-Based Calibration Approach

- Instead of calibrating the current reference tables point by point, we can make use of the known machine characterization data to define data-driven models of the electric machine, then generate the current reference tables according to optimization results.
- This is the idea behind model-based calibration; for which the MathWorks MBC Toolbox • can be used.

Calibration

DoE

Model-Based Calibration Workflow Overview

general motors

Model-Based Calibration Workflow

DOE Step Overview

- In order to utilize the machine equations to generate the calibrations, the flux characteristics of the machine need to first be determined.
- The machine flux can be determined at various combinations of D and Q axis currents, as well as speeds to ensure the entire operating space is characterized
- The DOE tool within MBC can be used to define the DOE with an optimal number of points using several built-in space filling techniques

Set up Constraints

general motors

Iq Generate DoE

Higher resolution here

Test or Analyze

 $T_e = \frac{3}{2} P(\lambda_d i_q - \lambda_q i_d)$ $V_q = r_s i_q + w_e \lambda_d + \frac{d\lambda_q}{dt}$ $V_d = r_s i_d - w_e \lambda_q + \frac{d\lambda_d}{dt}$ Steady State

D and Q Axis Flux Based on D and Q Axis Current

Characterization Complete

Model-Based Calibration Workflow

Data Modeling Overview

- Machine model is now generated using the characterized machine parameters
- For each speed and voltage, a response surface between the input D axis current and torque and the output Q axis current and flux can be developed
- This response surface will be used in later steps as the basis of the calibration.
- Data outliers can be removed in this step

The error between the model and the test results can be determined and used as a quality check on the model fitting results

Model Parameter Overview

Operating Points – Speed @ Given DC Voltage Inputs – D Axis Current & Torque Responses – Q Axis Current and Flux

Individual points represent tested points from previous DOE, and surface represents fitted model

Model-Based Calibration Workflow

Calibration

- Step 1 Define Constraints
 - Current < Current Max</p>
 - Flux < Maximum Allowable Flux (voltage constraints based on DC voltage, modulation index, stator voltage drop, and speed)
- Step 2 Define Objectives
 - Maximum Torque/Amp
 - Maximum Torque/Volt
 - Others as appropriate for application

	Algorithm:	fmi	ncon	~				- 1	
	Objective type:	Ma	ximize	~	Point		~		
	Data source:	Mo	del operating poir	ts 🗸			×	- 1	
	Free variables: 1 selected	Va	riable x ld x n v TrqPct_input						
	Add a model	boundary	Cance	<	Back	Next >	Fini	sh	
ditor fined filte	Add a model	boundary	Cance	I <	Back	Next >	Fini ou want 1	sh	
ditor fined filte *1.1 max*1.1	Add a model	boundary	Constraint Cance Specify an equa	I < ation which M greater	Back is true for than 1000	Next > records y specify RI	Fini ou want t PM > 101	sh to keep 00	
ditor fined filte *1.1 max*1.1	rs:	boundary	Cance Cance Specify an equa e.g. to keep RP flux <= flux_ma	tion which M greater ax*1.1	Back i is true for than 1000	Next > records y specify RF	Fini ou want PM > 10	sh to keep 00	2
ditor fined filte *1.1 max*1.1	rs:	boundary	Constraint Cance Specify an equa e.g. to keep RP flux <= flux_ma Variable	I < ation which M greater ax*1.1 Min	Back I is true for than 1000	Next > records y specify RF	Fini ou want PM > 100 Std	sh to keep 00 Units	
ditor fined filte *1.1 max*1.1	rs:	boundary	Specify an equa s.g. to keep RP flux <= flux_ma Variable Trq	tion which M greater ax*1.1	Back is true for than 1000 1 286.254 5 0	Next > records y specify RF Mean 143.165 -281.1	Fini ou want 1 PM > 101 Std 75.56	sh to keep D0 Units	>
ditor fined filte *1.1 max*1.1	rs:	boundary	Specify an equa e.g. to keep RP flux <= flux_ma Variable Trq Ia	tion which M greater ax*1.1 Min -565.	Back is true for than 1000 1 286 254 5 0 0 565 5	Next > records y specify Rf Mean 143.165 -281.1 249.047	Fini ou want 1 PM > 101 Std 75.56 158.606 152.004	shto keep	>
ditor fined filte *1.1 max*1.1	rs:	boundary	Constraint Cance Specify an eque e.g. to keep RP flux <= flux_ma Variable Trq Id Iq n	tion which M greater ax*1.1 Min -565.	Back is true for than 1000 1 286.254 5 0 0 565.5 0 8000 0 8000	Next > records y specify RF 143.165 -281.1 249.047 4500	Fini ou want 1 PM > 101 Std 75.56 152.004 152.004 2091	sh to keep 00	
ditor fined filte *1.1 max*1.1	rs:	boundary	Constraint Cance Specify an eque e.g. to keep RP flux <= flux_ma Variable Trq Id Iq Iq In Kax	tion which M greater ax*1.1 -565. 100 7.48e-	Back is true for than 1000 1 286.254 5 0 5 565.5 0 3 8000 3 0.125	Next > records y specify RF 143.165 -281.1 249.047 4500 0.077	Fini ou want 1 PM > 100 Std 75.56 158.606 152.004 2091 0.032	sh to keep 00)
ditor fined filte *1.1 max*1.1	rs:	boundary	Cance Cance Specify an equu s.g. to keep Pf flux <= flux_ma Nariable Trq Id Iq n flux flux_max	tion which M greater ax*1.1 Min -565. 100 7.48e- 0.06	Back a is true for than 1000 Max 1 286.254 5 0 0 565.5 8000 3 0.125 3 0.251	Next > records y specify RF Mean 143.165 -281.1 249.047 4500 0.077 0.158	Fini ou want 1 PM > 100 Std 75.56 158.606 152.004 2091 0.032 0.111	sh to keep 00	
ditor fined filte *1.1 max*1.1	rs:	boundary	Constraint Cance Specify an eque a g. to keep RP flux <= flux_mt Variable Trq Id Id In flux flux_mt Is	tion which M greater ax*1.1 Min -565. 100 7.48e- 0.06 4.12	Back a is true for than 1000 1 286.254 5 0 0 565.5 0 8000 3 0.125 3 0.521 5 620.979	Next > records y specify RF 143.165 -281.1 249.047 4500 0.077 0.158 411.964	Fini ou want 1 PM > 101 Std 75.56 158.606 152.004 2091 0.032 0.111 139.967	sh to keep 00	
ditor fined filte *1.1 _max*1.1	rs:	boundary	Constraint Cance Specify an equa e g. to keep RP flux <= flux_mx Variable Trq Id Id Id Id In flux_mx Is	tion which M greater ax*1.1 Min -565. 100 7.48e- 0.06 4.12	Back is true for than 1000 1 286.254 5 0 0 565.5 3 8000 3 0.521 3 0.521 5 620.979	Next > records y specify RF 143.165 -281.1 249.047 4500 0.077 0.158 411.964	Fini ou want 1 PM > 101 Std 75.56 158.606 152.004 2091 0.032 0.111 139.967	shto keep 00	;

Curre Is <

*This step is done using the CAlibration GEneration (CAGE) tool in the MBC Toolbox

general motors

Calibration Generation (CAGE)

- Using the model response surface
- Generate response surfaces and contours for each operating condition
- Maximize TPA for each operating point

MBC Calibration process explained on the id-iq plane

Generate Torque Envelope

- As a first step, CAGE will be used to find the maximum operating torque envelope of the system given the specified constraints.
- This step forms the boundary around which the current command tables will be generated

Performed for different DC voltage levels

Generate torque envelope at different DC voltages

Calibration Generation (CAGE)

Given the fitted models, where is the best (id, iq) operating points that can achieve pre-set optimization objective while satisfying certain physical constraints.

Optimization objective: maximize efficiency (Torque per Amp)

Constraints: current <= current_max flux <= flux_allowable

Model-Based Calibration Workflow

Implementation

- Once current reference tables are developed, they can be programmed into software and tested on the physical hardware.
- Plotted below are is a comparison of the peak torque envelope from calibrations developed using the MBC Toolbox, with those developed from existing processes
- MBC Toolbox is able to achieve similar performance with existing calibration processes but in a more automated and scalable manner.

general motors

Advantages of Model-Based Calibration Toolbox

• Speed

- Full table generation can be done in 2-3 minutes for optimization step (after pre-processing)
 - Pre-processing time dependent on resolution of data
- Process Consistency
 - By using a purposely built tool, with automation capability, consistency across different applications and different users can be ensured
 - Opportunity to put in data quality check points and not allow users to proceed without meeting pre-defined metrics
 - Allows for a wider audience of users

Wrap Up / Future Work

- Model-Based Calibration Toolbox was successfully demonstrated to produce comparable results to existing in house tools.
 - Similar peak torque envelopes demonstrated
 - Similar current reference tables generated
- Additional tools, such as App Designer, can be used to customize the MBC user interface such that the entire calibration workflow can be fully automated