

Development of an Enhanced Heavy Duty Truck Autonomous Driving Simulation Environment

Bibin Pattel

Jairo Sandoval

Hoseinali Borhan

[Accelerated Technology Center – Cummins R&T]

Outline

- Motivation: Connectivity and Advanced Driver Assist Systems (ADAS) and Automated Driving Systems (ADS) for Transportation
- Interaction of ADAS and ADS with the Powertrain Systems
- Need for Simulation Framework
- Simulation Framework Overview
 - Collaboration with MathWorks and integration of Mathworks Automated Driving Toolbox Motion Planning and Motion Control Features
- Identify Improvement Opportunities and Simulate Advanced Solutions on Different Scenarios

Motivation: Connectivity and ADAS/ADS for Transportation

(CC)

- Only limited research/solutions available combining autonomous driving with Fuel/Energy Efficiency
- Extend our core competency and expertise in Powertrain controls development to help in system integration and automation
- Goal is to provide interface for ADAS/ADS solutions considering Powertrain Efficiency and Fuel/Energy Optimization
- Deep integration requirements between our powertrain, ADAS and ADS Suppliers and OEM

MathWorks Automotive Conference 2021

DT & Data

Traffic

Interaction of ADAS and ADS with the Powertrain Systems

- Important to understand the interaction between the components and features: CACC Example
- Typically path planning/motion planning does not consider optimizing energy utilization of the powertrain system
 - Mostly considers start/end locations and trip time for global path planning
- Global path/speed profile can be optimized considering powertrain, road grade profiles, traffic etc.
- Local optimization during short horizon trajectory generation for
 - Lane change decisions
 - Opportunistic platooning

Need for Simulation Framework

•

- Plug and play interface for components and ADAS options for longitudinal and lateral control
- Assess existing and new controls
- Simulink as integration platform
 - Engine, Transmission, Aftertreatment
 - Different levels of fidelity of components

- Motion Planner and Motion Controller from Mathworks Automated Driving Toolbox
- IPG Truckmaker
 - Longitudinal and lateral vehicle dynamics
 - Tractor/Trailer/Tire models
 - Visualization

Automated Driving Toolbox Design, simulate, and test ADAS and autonomous driving systems

Importing Real World Routes/Scenarios

- Import real world road networks into the simulation framework using the OpenDrive file support
 - Elevation and Speed limit required
- OpenDrive is a standard open format specification for describing road networks

Motion Planning from Automated Driving Toolbox (Customized)

Custom Behavior Layer

- Customizable behavior layer for
 - Optimal speed target, preferred lane, target gaps to the front and rear vehicles
 - For example inhibit lane change under certain conditions
- Can interface advanced control methodologies to utilize connectivity, and look ahead information
 - Model Predictive Control (Online)
 - Dynamic Programming for global optimization (Offline + Cloud connectivity)

Motion Tracking Controllers from Automated Driving Toolbox

- Longitudinal and Lateral Stanley controllers from Automated Driving System toolbox
- Tunable controller parameters makes it easy to adapt these controllers for different class of vehicles
 - Gains
 - Acceleration/Deceleration Limits
 - Mass
 - Steering Angle
- Longitudinal Motion Tracking Controller

🛅 Block Parameters: Longitudinal Controller Stanley	×
Longitudinal Controller Stanley	
Compute acceleration and deceleration commands that control the velocity of vehicle given the reference velocity, the current velocity, and the current driving direction.	of a
The controller is implemented as a discrete Proportional-Integral (PI) contro with integral anti-windup. To reset the integral of velocity error to zero, pass nonzero value to the Reset port.	ller a
The Direction port accepts a scalar representing the driving direction with two possible values: 1 for forward motion and -1 for reverse motion. The output AccelCmd and DecelCmd are saturated by the maximum longitudinal acceleration and the maximum longitudinal deceleration parameters.	/O S
Controller Settings	
Proportional gain, Kp: C_Ctrl_Long_Kp	:
Integral gain, Ki: C_Ctrl_Long_Ki	:
Sample time (s): C_Ctrl_Long_Sample_Time	:
Vehicle Parameters	
Maximum longitudinal acceleration (m/s^2): C_Ctrl_Long_Max_Accel	E
Maximum longitudinal deceleration (m/s^2): C_Ctrl_Long_Max_Decel	:

OK

Help

Cancel

Motion Tracking Controllers from Automated Driving Toolbox

Lateral Motion Tracking Controller

- Longitudinal and Lateral Stanley controllers from Automated Driving System toolbox
- Tunable controller parameters makes it easy to adapt these controllers for different class of vehicles
 - Gains
 - Acceleration/Deceleration Limits
 - Mass
 - Steering Angle

Motion Controller and Vehicle Dynamics

Scenario 1.1: Highway Passenger Car Merging

- Merging scenario with left lane occupied
 - Option 1: Go with the target speed and at the merge apply deceleration or brake => Energy Loss
 - Option 2: Coast down to the merge (Zero Fueling), and then change to left lane => Energy Efficient

Scenario 1.2: Highway Truck Merging Opportunity for Platooning

- If the truck which is merging is equipped with V2V / DSRC communication and exchange information such as the destinations, planned paths, trip times, their weights etc. and decide to form platoon instead of changing lane and trying to overtake
- Drag reduction benefits

Concluding remarks

- Used MATLAB, Simulink as a plug and play simulation integration platform for evaluating existing and new control strategies for ADAS features
- With MathWorks collaboration and support, blocks and algorithms from Automated Driving Toolbox are used for Motion Planning and Motion Control, with customized behavior planner
- Integrated with IPG Truckmaker for detailed vehicle dynamics, visualization, and Traffic objects interaction
- Developed plug and play interface ready to be used with Motion planning/control features from different ADAS suppliers

www.cummins.com Email: <u>bibin.n.pattel@cummins.com</u>

cuminins