
Authentic Engineering
Assessment:
From formative quizzes to high-
stakes examination

Presented by

Garth Pearce

Associate Professor and Deputy Head of School (Education)

Mechanical and Manufacturing Engineering

UNSW

Context

I teach 3rd yr, 4th yr and PG courses in
Mechanical and Aerospace Engineering:

• Aerospace Structures (~10 yr)

• Finite Element Methods (~5 yr)

The courses skew toward engineering analysis
and build on fundamental knowledge in previous
years. These are not coding classes.

There is a diverse cohort in the classes, with
between 40-60% international students. For
many PG students, FEM is their first UNSW
course.

Skippy the Giraffe, CC BY-SA 4.0
<https://creativecommons.org/licenses/by-sa/4.0>,
via Wikimedia Commons

https://www.flickr.com/photos
/stanfordedtech/8031101633/
CC 2.0

Authenticity

• Solve “real world” problems

• Align teaching with practice

• With software:

• Decouple algorithms from mathematics

• Improve efficiency of work and learning

• Assess the whole “toolbox” of skills

• Align student incentives

Daren, CC BY 2.0
<https://creativecommons.org/licenses/by/2.0>,

via Wikimedia Commons

Engineers Australia Competencies

2.1: Application of established engineering methods to
complex engineering problem solving.

2.2: Fluent application of engineering techniques, tools
and resources.

2.3: Application of systematic engineering synthesis and
design processes.

There is a gap here. Some of our assessment encourages
being good at solving instances of problems (i.e. traditional
exams). Instead, we want students to learn methods to
solve whole classes of problem.

Embedding Software in
Coursework

• Three step approach:
1. Augment class theory with code and digital

counterparts

2. Use student code and software for authentic
projects

3. Assess skills using complex problems under
software-friendly exam conditions

Computer-
based exams

Authentic
analysis project

Coding and
software-

enhanced theory Original photo: User:Fanghong Derivative work:
User:Gnomz007, CC BY-SA 3.0

<http://creativecommons.org/licenses/by-sa/3.0/>, via
Wikimedia Commons

Augment Theory with Code

• Every theoretical concept has a
complimentary MATLAB Live
Script

• Live Scripts allow native
embedding course theory, pictures,
code, widget, graphical output, etc

• These simulations allow students
to decouple the algorithm from the
implementation of the algorithm

• leading to better mental models
and heuristics

• Seamless desktop and online code
storage through MATLAB Drive is
a HUGE benefit.

Solve class example

Replicate in MATLAB

Generalise with
different variables

Extrapolate to a class
of similar problems

Simulation

• Widgets and live scripts offer
opportunities to make simple
system simulations (without
Simulink)

• Some evidence suggests that
exposing students to guided
simulations before theoretical
analysis enhances the
learning experience

Live Script Example

Use Code in Authentic Projects

Example

Students work in groups to analyse stress
in the wing of a plane (that they eventually
get to fly!)

Code built up through classes
is progressively applied to
solve the different challenges

Students synthesise and adapt the code
they have been given and build their own
“toolbox”

Software-Friendly Exams

• High-stakes examination in open-
web, open-software computer lab

• Students have access to all the
tools in their software arsenal

Pre-COVID invigilated exam

Learn theoretical
concepts using

code

Synthesise and
adapt code to solve

deeper problems

Apply code to solve
problems in exam

setting

A
lig

n
ed

 S
tu

d
e

n
t

In
ce

n
ti

ve
s

MATLAB Changes Exams

• Questions can be more authentic
and address deeper concepts

• Fewer limits on question scope
(e.g. asking students to solve
systems of linear equations or
complex integrals)

• More efficient solves mean more
questions can be asked in the
same period.

• greater coverage of course topics

• encourages students to study
broadly

Concern

Learning concepts with code
undermines theoretical

understanding.

Code is easy to
share and copy.

Students will just share code
with a full worked solution.

Response

Separating concepts and
algorithms from mathematical
implementation creates deeper

intuition.

Copying is a feature, not a bug.

Leverage sharing to help everyone.

Ask high level questions to ensure
students understand and can use

the software.

Summary

• Software skills are a necessary
requirement of authentic learning
and assessment for engineers

• Coding can augment theoretical
concepts with rapid simulation and
visualisation

• Integration of software into
classes, projects and exams is
critical to align student incentives
and motivation

Learn theoretical concepts
using code

Synthesise and adapt code
to solve deeper problems

Apply code to solve
problems in exam setting

Student Feedback

The way the course strongly

emphasized the use of MATLAB and

other calculation softwares felt very
relevant for employment in the future.

Garth's MATLAB code proved

to be the aspect of the course I
found the most useful.

… the use of Matlab, it really

shows how Matlab is usefully
in real life

