5G and Wireless Design

Houman Zarrinkoub

John Wang

3 Topics We Cover Today

UbiquityComplexityEfficiencyModel 5G/Wireless connectivity systems and
standardsIntegrate and simulate multi-domain designs
from antenna-to-bitsIterate, optimize and verify design
implementations

Wireless Communication is Everywhere

Connected Devices

- Automotive
- Industrial
- Smart home
- Smart city
- Medical

Common Challenges of Wireless Design

Physical Layer Design

- OFDMA
- Mu-MIMO
- Channel estimation/Equalization
- Modulation & Coding
- RF Linearization (PA and DPD)

Ubiquity

Ubiquitous Connectivity

Deployment & Verification

System Engineering

- mmWave
- Link Budget Analysis
- Capacity & throughput
- System-level simulation
- Co-Existence and Interference

Complexity

Design Complexity

Fixed-point design

- Parallelism
- Area-speed tradeoffs
- Over-the-air testing
- Rapid Prototyping and IP design

Efficiency

Efficient deployment & testing

Ubiquitous connectivity – technologies & standards

5G: A Megatrend & Driving Force

Trend: Emerging Satellite communications

Driven by development of high-speed internet connectivity

Orbit Propagation and Visualization;
Access and Link Analysis

Link Budget Analysis

Name	L1
Distance (km)	3.6595e+03
Elevation (deg)	20.2176
Tx EIRP (dB)	51
Polarization loss (dB)	3.0103
FSPL (dB)	186.6387
Received isotropic power (dBW)	-141.6490
C/No (dB-Hz)	87.9502
C/N (dB)	20.1687
Received Eb/No (dB)	17.9502
Margin (dB)	5.9502

Waveform Generation

End-to-End Simulations

Trend: Wi-Fi evolution – Driven by IoT

802.11ac 802.11ax Wi-Fi 6

100s of Mbps, high efficiency with lots of devices

802.11ax 802.11be Wi-Fi 7

Gbps, reduced latency and jitter

More devices & dense environments

Industry 4.0

802.11az - Positioning

Direction Finding & Localization

Common use-cases of standard-based connectivity design

Waveform Generation

Link-level Simulation

Al Workflow Pre-trained models, training, evaluation, validation

Interference & Coexistence

Network Simulation

Wireless Waveform Generator App

- Interactive waveform generation
- 5G NR off-the-shelf waveforms:
 - NR-TMs / FRCs
- Custom downlink & uplink waveforms
 - New in the App in R2021 a

📣 Wireless Waveform Generator - Spectrum Analyzer											
GENERATOR	TRANSMITTER										
New Open Session Session V S FILE	Save ession • 56	5a	5a	5a	5a						
Main × SS Bur ▼ 5G Downlink	rst X P Downlink	Uplink	Downlink FRC	Uplink FRC	Test Models (

R2021a

IEEE 802.11be Waveform Generation

End-to-end Link-level Simulation

End-to-End DVB-S2 Simulation with RF Impairments and Corrections

5G NR PDSCH Throughput

802.11ax Downlink OFDMA and Multi-User MIMO Throughput Simulation

Interference & Coexistence

• 2.4 GHz BLE ZigBee

• 5/6 GHz

• 60 GHz

Example - 802.11ax RF receiver with 5G interference

5G NR System-level Simulations

- Evaluating performance of different schedulers
 - Round-robin, proportionally fair, best CQI

Deep Learning for Wireless Workflow

3 Topics We Cover Today

Integrated Multi-domain Modeling Complexity

Workflow for Antenna-to-Bit Multi-Domain Design

Design, Analyze and Visualize Antenna Elements and Arrays

- Get started with antenna and array catalog, and apps
- Perform full-wave EM simulation
- Improve the performance using surrogate optimization
- Design and fabricate PCBs with Gerber file generation
- Analyze the effects of installation on large platforms

Architecture Exploration for Hybrid Beamforming

П

Power Amplifier Linearization: 5G Simulation Results

Generate 5G waveforms 1.

"NR-FR1-TM3.1"; % Reference channel(NR-TM or FRC) rc = % Select the NR waveform parameters "100MHz"; % Channel bandwidth bw =scs = "30kHz"; % Subcarrier spacing dm = "FDD"; % Duplexing mode

2. Model PA memory and non-linearity

rxWaveform dpd = rf dpd(txWaveform);

Create a RF system including DPD 4.

	File Edit	View Ins	ert lools	Deskte	op Wir	dow H	Help			
	🗋 🗃 🛃	9 3		k 🔳						
			Ec	ualized	symb	ols cor	nstell 🖉	.⊿∈]⊕⊕€	26
	1.5									
		1					٠			
	1			-	-				-	1
B. Measure EVM	0.5					~				
	0.5				-		۰			
					٠	۰	-	۲		
edge RMS EVM, Peak EVM, slot	17: 3.	348	11.7	43%	۲	-	۰	٠	٠	
edge RMS EVM, Peak EVM, slot 1	8: 3.3	343 1	1.74	5%	۰	-	٠		٠	-
edge RMS EVM, Peak EVM, slot					4	•				
edge RMS EVM, Peak EVM, slot 1					-	-				-
5					-	1.4				
edge RMS EVM, Peak EVM, slot			11./	424						
aged low edge RMS EVM,frame 0:	3.325	58			()	0.5		1	1.5
aged high edge RMS EVM,frame 0	: 3.32	25%								
aged RMS 3GPP EVM frame 0: 3.3	25%									
aged overall RMS EVM: 3.325%										

承 Figure 3

Eile Edit

3

Low e

High Low e High

Avera Avera Avera Avera

Peak EVM = 12.1753%

	Figure 5							-		\times	
	File Edit View Insert Tools Desktop Window Help										ъ.
	🗅 🧉 🐸 🔜 🗉 🗉 🗟 🖬										
	Equalized symbols constellation										
	1.5										
	1-	+	•		•	+	•	٠	•	_	
		•	•	+	+	+	•		•		
4. Measure EVM w	∕ D¢P		•	٠	•	+		•	•	-	
							•	•	•		
Low edge RMS EVM, Peak EVM, slot 1										-	
High edge RMS EVM, Peak EVM, slot	17: 0.7	89 3.	.146	00	•	•	*	•	*		
Low edge RMS EVM, Peak EVM, slot 1	8: 0.79	4 3.2	210%		+	+	+		+	-	
High edge RMS EVM, Peak EVM, slot	18: 0.7	94 3	.151	00	٠	•	٠		•		
Low edge RMS EVM, Peak EVM, slot 1	9: 0.77	0 3.2	217%			+				-	
High edge RMS EVM, Peak EVM, slot	19: 0.7	70 3	.152	응							
Averaged low edge RMS EVM, frame 0:	0.783%				()	0.5		1	1.5	
Averaged high edge RMS EVM, frame 0	: 0.783	 8									
Averaged RMS 3GPP EVM frame 0: 0.7											
5	000										
Averaged overall RMS EVM: 0.783%											
Peak EVM = 3.7347%											

Propagation Channels

- Scattering MIMO channel
- Free space path loss
 - Ray-tracing channel

Loss due to gases, fog, clouds

Array Beam Steering and RF Propagation

- Rectangular array of dipoles reflector-backed, operating at desire frequency
- (Electronically) Steer the array beam and assess coverage and links

3 Topics We Cover Today

Simulink

HDL Coder

HDL Verifier

Hardware Deployment, Verification and Testing

Wireless HDL Toolbox

Mission statement:

Provide high value reference applications and HDL IP blocks to accelerate the pace of design, implementation and verification of communication systems.

Applications:

- 1. 5G receiver reference applications
- 2. Custom OFDM reference applications

5 MIB Recovery Reference Application

RF Pixels Verifies Millimeter Wave RF Electronics on a Zynq RFSoC Based Digital Baseband

Challenge

Test and demonstrate radio front-end designs that incorporate specialized RF electronics hardware and millimeter wave spectrum technology

Solution

Use MATLAB and Simulink to implement a digital baseband and deploy it to a Zynq RFSoC board for over-the-air testing

Results

- Engineering effort reduced by one year or more
- Digital baseband implementation completed by a single engineer
- Design iterations reduced from weeks to days

Digital baseband implemented in HDL, used to verify the RF Pixels radio front end.

"By adapting the LTE golden reference model from Wireless HDL Toolbox and deploying it to a Zynq UltraScale+ RFSoC board using HDL Coder, we saved us at least a year of engineering effort—and this approach enabled me to complete the implementation myself, without having to hire an additional digital engineer."

- Matthew Weiner, RF Pixels

Over-the-air testing: Moving designs to the lab

0 000 000 00 wz LAN/USB/GPIB **RF Signal Generator**

.

Signal Generation and Transmission

Signal Acquisition and Analysis

Over-the-air testing: Moving designs to the lab

Signal Acquisition and Analysis

RF Instrument Connectivity in Wireless Waveform Generator App

Transmit wireless waveforms with RF instruments (e.g., Keysight/ Agilent, Rohde & Schwarz)

- Need Instrument Control Toolbox
- Automatically discover available instruments
- Transmit/stop infinitely looped waveforms
- Configurable transmission frequency, output power and (integer) interpolation factor

MATLAB & Simulink Tools for Wireless Design

How to Learn More

Wireless Communications product pages

mathworks.com/products/

5G LTE WLAN Satellite-communications

Wireless communications solution page

mathworks.com/solutions/wirelesscommunications.html

Thank you

© 2021 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.