AEROSYSTEMS

VERS UNE CONCEPTION INTÉGRALE À BASE DE MODÈLES ?

Sébastien RATISSEAU – System Engineer 06/18/2019

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Table of contents

- **1.** INTRODUCTION OF SAFRAN ELECTRICAL POWER (SEP)
- 2. PROJECT A: SYSTEM MODEL EMBEDDED IN A FLIGHT SIMULATOR FOR PILOT TRAINING
- **3.** PROJECT B: BMS SOFTWARE DESIGN
- 4. ROAD MAP

INTRODUCTION OF SAFRAN ELECTRICAL POWER (SEP)

1. SEP ACTIVITIES

3

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Main & Auxiliary Power Generation

Power Conversion

Battery

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

2

PROJECT A: SYSTEM MODEL EMBEDDED IN A FLIGHT SIMULATOR FOR PILOT TRAINING

- **1.** WHAT WAS THE CUSTOMER EXPECTATION?
- **2.** HOW TO REPRESENT THE SYSTEM?
- **3.** HOW TO ENSURE THE MODEL REPRESENTATIVITY?
- **4.** WHAT HAVE WE LEARNED FROM THIS PROJECT?

What was the customer expectation?

Design a flight simulator

Develop a real-time solution which simulate the whole EPGDS

System level requirements	> 1,500
Electrical loads	> 500
ECU	> 50
Physical interfaces	> 5,000
Communication	> 120,000 signals sent through 30 communication buses

MATLAB/Simulink R2012b used to create the model

- Model contains core partner's elements
- Use of encrypted models to protect intellectual properties

National Instrument solutions for the real-time bench

- LabVIEW for standalone application deployment
- VeriStand for the bench

How to represent the system?

How to represent the system?

Main & Auxiliary Power Generation

Power Conversion

Battery

8

How to represent the system?

How to represent the system? PPDS model

Model complexity

- 134k blocks
- 15 referenced models
- 300 actuators inside the plant

Functional interfaces

- 600 inputs
 - 5% from avionic
 - 95% of failures injection
- 1000 outputs
 - 25% system state communication
 - 75% of electrical power availability information

How to represent the system? SPDS model

Model complexity

750k blocks

Functional interfaces

- 4,800 inputs
 - 5% of electrical power availability information from PPDS
 - 95% of commands through communication buses
- 1,800 outputs
 - 5% of electrical power availability information
 - 95% system state communication

Model is auto-generated

How to ensure the model representativity? Simulation

Traceability with the specification thanks to Simulink V&V toolbox

MIL automated tests from a custom MATLAB application

- Tests are defined in Excel with a custom format
- Automated verification of expected results with simulation's outputs

Non regression tool

- Use of Simulink Project
- Run automated tests after each integration phase

How to ensure the model representativity?

Standalone application and real-time bench deployment

System real-time tests with a Windows application (Simulink Coder)

- Help for system analysis and debug
- Good communication tool used inside the company and with the customer

Same HMI and compiled models are used on the real-time bench

What have we learned from this project?

Modular architecture

- Team work is easier (referenced models + Simulink Project + source control)
- Possibility to use the model in MIL and in real-time without additional effort
- SimScape real-time usage feedback

Development time reduction process

- Model
 - 1.5 FTE during 1 year for the POC
 - 2 FTE during 2 years for the updates
- Real-time means
 - 2 FTE during 2 years for the development
- 2.5 months required for the first bench integration \rightarrow 12 hours at the end of the project

Real-time bench has been used 24/7 by the customer for 2 years

Global bench behavior is consistent with real system

3

PROJECT B: BMS SOFTWARE DESIGN

- **1.** WHY GENERATING C CODE?
- **2.** WHAT'S THE IMPACT ON THE MODEL ARCHITECTURE?
- **3.** HOW TO VALIDATE THE CODE GENERATION TOOLCHAIN?
- **4.** WHAT HAVE WE LEARNED FROM THIS PROJECT?

Why generating C code?

Develop a high voltage battery

- Safety Of Flight expected
- R&T project

Reduce time development

- > Use the system model to define the embedded logics
 - Modular architecture reuse from project A
- > Whole applicative software auto-generated from Simulink (Embedded Coder)
 - DO-178C inspired process

Upgrade of MATLAB version to R2017b

What's the impact on the model architecture?

17

What's the impact on the model architecture? Software model

Software

Embeds all applicative software functions

- Input signals conditioning (analogic measures, communication frames ...)
- Internal logics (battery management, states estimators, ...)
- Output signals conditioning (communication frames ...)

■ All applicative software functions can be validated in simulation with the system model

Model is not linked to the controller hardware

Auto-generated C code could be used with another controllers if they have enough hardware resources

How to validate the code generation toolchain?

Does the C code behave as the model?

MIL

- Automatic tests (nominal + dysfunctional)
 - Defined at system level
- Model coverage measure
 - Target: 100% of Condition and Decision

HIL

- 2 modes
 - Manual
 - For integration and specific debug tests
 - Automatic
 - $\circ~$ Run the same tests as the MIL

Automatic comparison of MIL/HIL tests

 Unexpected controller behavior risk is highly minimized

What have we learned from this project?

■ New architecture used both for system simulation and C code generation

Software model is validated in the system context before being auto generated

Risk of an unexpected behavior of the generated code is highly reduced

Thanks to automatic tests in MIL + HIL

New features could be tested quickly thanks to rapid prototyping method

1 minute required to generate and deploy the software on the custom target

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Road map

Develop a unique design standard for all projects

Custom checks inside Model Advisor

■ Use the model for architecture design (System Composer or other tool)

- Make team communication easier
- Problems can be anticipated since the beginning of the project
 - Time saving for some activities (interface definition etc)

POWERED BY TRUST

23