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Why MATLAB for Artificial Intelligence?
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Artificial Intelligence

Development of computer programs to perform tasks that
normally require human intelligence
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Machine Learning and Deep Learning
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Machine Learning and Deep Learning
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Machine learning typically involves
feature extraction

Deep learning typically does not
iInvolve feature extraction
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Deep Learning Uses a Neural Network Architecture

ANRANAN
@ \»/"‘}\«1"‘}\«1"“«/ (
RS IRCXRC=OC
IRCIIRCITRCI
o ® fa \\w \\w |
Input Layer ?_L;E/pet:’t

4\ MathWorks



Image

Numeric

MATLAB EXPO 2019

Deep Learning Datatypes
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Deep Learning Workflow

Prepare Data Train Model

Model design,
hyperparameter
tuning

() Data access and
N preprocessing

%3’ Ground truth labeling Model exchange
across frameworks

Hardware-
accelerated training

Deploy

Multiplatform
code generation
(CPU, GPU)

Edge deployment

Enterprise
deployment
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Why MATLAB for Al Tasks?

Increased productivity with interactive tools )

(Generate simulation data for complex models and systems>

Ease of deployment and scaling to various platforms >

Full Al workflows that cannot be easily
replicated by other toolchains

10



4\ MathWorks

Why MATLAB for Al Tasks?

< Increased productivity with interactive tools >

< Labeling > < Training > <Exl\</l:(r)12§|ge>

Full Al workflows that cannot be easily
replicated by other toolchains
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Labeling for deep learning Is repetitive,
tedious, and time-consuming...

but necessary
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Partially automate ground truth labeling with Apps

4\ Image Labeler
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Partially automate ground truth labeling wi

4\ Ground Truth Labeler
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Applications developed using labeled data
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User Story — Veoneer (Autoliv)

Automotive:

— Software and hardware for active safety,
autonomous driving, occupant protection,
and brake control

Application:
— Build radar sensor
— Check accuracy using LIDAR-based verification

Used MATLAB to semi-automate labeling and
tracking of 3D LIDAR point clouds
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Autoliv Active Safety

Autoliv =4

16



Manual Labeling for 25 events took over 20 minutes.
After automation with MATLAB tools, it took 5 minutes.
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Design deep networks interactively

4\ Deep Network Designer
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4\ Deep Leaming Netwaork Analyzer

Network from Deep Netwlork Designer
Analysis date: 26-Feb-2019 06:19:34

Design network with Deep Network Designer
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- Check for errors with Network Analyzer
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Weights 5x5x1x20
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Transfer Learning with Pre-trained Models

( SqueezeNet ) ( MobileNetVZ)
( AlexNet ) ( Xception
( GoogLeNet ) ( ResNet-18 )
( VGG-16 )

(Inception-v3> ( ResNet-50 ) (gg:ﬁgﬁ\%)
( VGG-19 )
(DenseNet-ZOl) ( ResNet-101 )

Import & Export Models Between Frameworks

TensorFlow-Keras Caffe Model ONNX Model
Importer Importer Converter
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Model Exchange with MATLAB

( PyTorch ) TensorFlow-

( MXNet ><—> ONNX 4—>(|\/|ATLAB>

4 |
= o,

ONNX = Open Neural Network Exchange
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Why MATLAB for Al Tasks?

Increased productivity with interactive tools )

Generate simulation data for complex models and systems)

BYYS

Ease of deployment and scaling to various platforms >

Full Al workflows that cannot be easily
replicated by other toolchains
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Why MATLAB for Al Tasks?

(Generate simulation data for complex models and systems>

Reinforcement
Learning

Full Al workflows that cannot be easily
replicated by other toolchains
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Reinforcement Learning vs Machine Learning vs Deep Learning
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Reinforcement learning learns
through trial and error, i.e.
through interaction

It's about learning a behavior or
accomplishing a task
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What is Reinforcement Learning?

Reinforcement learning is a type of machine learning that trains an agent through
repeated interactions with an environment through a trial & error process that uses
a reward system to maximize success
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A Practical Example of Reinforcement Learning

Training a Self-Driving Car
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A Practical Example of Reinforcement Learning
Training a Self-Driving Car

OBSERVATION [

AGENT ] ACTION . .
» Vehicle’s computer learns how to drive [agent]
» using sensor readings from LIDAR, cameras [observation]
» that represent road conditions, vehicle position [environment]
» by generating steering, braking, throttle commands [action]
REWARD » to avoid collisions and lane deviation [reward].

ENVIRONMENT

The goal of reinforcement learning is for the agent to find

an optimal algorithm for performing a task
26



Deep Networks are commonly found in the agent, because

they can model complex problems.

AGENT \

Turn left
Turn right
Brake
Accelerate
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Reinforcement Learning Workflow

Generate Data Train Model

O\ Scenario Design

Reinforcement learning

=i= Training agent to
=3 perform task

Developing reward
@ system to optimize

performance

_Dlil Simulation-based
data generation

Simulink -
generate data for
dynamic systems

(planes, cars,
robots, etc.)

Deployment

Multiplatform code
generation
(CPU, GPU)

Edge deployment

Enterprise
deployment
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Scaling up deep learning in parallel and in the cloud
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MATLAB Parallel |
Server

Run thousands of simulations in parallel with MATLAB Parallel Server

to save hours of training time.

&
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MATLAB and Simulink for Reinforcement Learning

Reinforcement learning is a
dynamic process

MATLAB and Simulink virtual models
allow you to simulate conditions that
are difficult or dangerous to emulate in
the real world

Suitable for:

— Control-based problems, e.g.
automated driving (lane keep assist,
adaptive cruise control), robaotics, etc.

— Decision-making problems, e.g.
financial trading, games, etc.
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Why MATLAB for Al Tasks?

Increased productivity with interactive tools )

(Generate simulation data for complex models and systems>

Ease of deployment and scaling to various platforms >

Full Al workflows that cannot be easily
replicated by other toolchains
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Why MATLAB for Al Tasks?

( Ease of deployment and scaling to various platforms >

Code Embedded Enterprise
Generation Devices Systems

Full Al workflows that cannot be easily
replicated by other toolchains
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Deployment and Scaling for Al

Embedded Devices ‘ n —mmem g ENterprise Systems
4 =

MATLAB EXPO 2019
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Deploying Deep Learning Models for Inference

B} A Intel
(II'ItEl) MKL-DNN
i Library
‘ ‘ MATLAB Coder ARM
‘ ‘ Compute
GPU Coder m Library

Deep Learning
Networks

! NVIDIA
@2 TensorRT &
nvibia,  'PNN

Libraries
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Musashi Seimitsu Industry Co.,Ltd.
Detect Abnormalities in Automotive Parts

Automated visual inspection of 1.3 million
bevel gear per month

MATLAB use in project:
Preprocessing of captured images
Image annotation for training

Deep learning-based analysis

— Various transfer learning methods
(Combinations of CNN models, Classifiers)

— Estimation of defect area using Class Activation
Map (CAM)

— Abnormality/defect classification
Deployment to NVIDIA Jetson using GPU Coder
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Why MATLAB for Al Tasks?

Increased productivity with interactive tools )

(Generate simulation data for complex models and systems>

Ease of deployment and scaling to various platforms >

Full Al workflows that cannot be easily
replicated by other toolchains

37



