
1© 2015 The MathWorks, Inc.

Making Software Safe and Secure 

with Team Collaboration
Static Analysis with Polyspace 

Olivier Bouissou



2

Agenda

1. Why do you need Static Analysis?

2. Polyspace Static Analysis

3. Team Collaboration with Polyspace



3

1. Why do you need Static Analysis?

Martin Eric Bob



4

Martin is a software developer.

He writes code in C/C++.

I’m already doing code reviews

and writing unit tests.

Why should I run a static analysis

tool?



5

Martin is a software developer.

He writes code in C/C++.

I’m already doing code reviews

and writing unit tests.

Why should I run a static analysis

tool?



6



7

“Given that we cannot really show there are no more errors 

in the program, when do we stop testing?”

Brent Hailpern, Head of Computer Science

Dijstra, “Notes on Structured Programming” (1972) 
Hailern, Santhanam, “Software Debugging, Testing, and Verification”, IBM Systems Journal, (2002)

Program Testing
“Program testing can be used to show the presence of bugs, 

but never to show their absence”

Edsger Dijkstra, Computer Science Pioneer



8



9

Bug Finder



10

Code Prover



11

Eric is a Simulink and Embedded Coder user.

He is responsible for generating code from models.

I’m generating my code from Simulink, 
and running V&V tools on the models. 
Why should I check my software too?

Mixed integrated software

SW 

component 

#2

Model Code C
C++

SW 

component 

#1



12

Bob is a software developer.

He is writing software embedded in a pacemaker.

I’m working for a medical 
company.

Is static analysis useful for me?

KOSTAL Asia R&D Center Receives ISO 26262 

ASIL D Certification for Automotive Software

Alenia Aermacchi Develops Autopilot 

Software for DO-178B Level A 

Certification

Miracor Eliminates Run-Time Errors and 

Reduces Testing Time for Class III Medical
Device Software



13

2. Polyspace Static Analysis

For software written in C, C++, and Ada



14

Proving Absence of Critical Run-Time Errors

▪ How many run-time errors are possible?

1. Divide by zero

2. Overflow

3. Uninitialized variables



15

Proving Absence of Critical Run-Time Errors

What Polyspace infers:

𝑘 ∈ [−10,10]

𝑦 = 𝑘 + 5

𝑦 = 𝑘 + 5 + 𝑥 − 2 ∗ 3.141592

𝑘 ≥ (71 − 100)/3

𝑥 = 10

𝑦 ≥ 20.466



16

Proving Absence of Critical Run-Time Errors

Proven mathematically by 

Polyspace that run-time error 

will not occur



17

Mathematical proof via the Abstract Interpretation framework

▪ Very generic theory that ensures soundness, automaticity and scalability.

▪ Soundness

– Captures all possible executions of the program

– A green check proves that all executions are safe from Run Time Error

▪ Automaticity

– No user intervention is required to guide the analysis

▪ Scalability

– Technique scales up to large software with very complex dataflow



18

Proving 
Absence
of Critical 
Defects & 
Vulnerabilities
(33)

Defect & 
Vulnerability 
Checkers
(251)

Coding 
Standards, 
Cybersecurity 

Guidelines

Code 
Metrics

Code Prover
• Proves code Safe and Secure

• 33 most critical run-time checks

• Helps getting certification credits 

(DO-178, ISO 26262, …)

Bug Finder
• Produce code metrics

• Check coding standards

• Find defects and vulnerabilities

Polyspace Tools



19

3. Team Collaboration with Polyspace

Quinn Dara



20

Workflow with New Polyspace Products in R2019a

1. Developers check-in code into repository, Build Engineer has configured Jenkins to run Polyspace analysis

2. Jenkins initiates Polyspace analysis run on the server (periodically or at program milestones)

3. Once Polyspace analysis run concludes, results are uploaded to Polyspace Access

4. Team Lead/Manager, QA, Developers use web browser to review results, open Jira defects, monitor quality metrics

Polyspace Bug 

Finder Server

Polyspace Code 

Prover Server

Server

2

Initiate

Upload 

Results Polyspace Bug 

Finder Access

Polyspace Code 

Prover Access

Polyspace Results

3

Web Browsers

Team Lead

Manager

QA 

Engineer 

4 Online Review

Source Code

Repository

Developer

Developer

Developer

Developer

1 Code Check-ins

Build 

Engineer

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwii8oS_-6PdAhXtQ98KHWfLC5YQjRx6BAgBEAU&url=https://marketplace.topdesk.com/jira-integration-by-topdesk/&psig=AOvVaw2h05vc4-AL-Ent-a3BfyIs&ust=1536240344328142


21

Quinn is a Quality Engineer

She is responsible for triaging software defects

▪ She received an email notification from last

night’s Jenkins initiated Polyspace analysis

▪ The email indicates several findings were

found in her project

▪ She clicks on the link in the email to view

the findings in Polyspace Access

Bob Builder

To: Quin Quality



22

Quinn is a Quality Engineer

She is responsible for triaging software defects



23

Project Zen

Dara is a software developer

She is responsible for writing code and fixing defects

▪ Dara has been assigned 2

defect tickets in Jira

▪ She opens the first JIRA ticket

and clicks the Polyspace

Access link



24

Dara is a software developer

She is responsible for writing code and fixing defects



25

4. Summary



26

Summary

▪ Use Polyspace to achieve high quality software with reduced testing effort

– Prove that your code will not cause safety hazards or security issues

▪ Polyspace fits software development workflows

– Jenkins for build automation and Jira for bug tracking

▪ Support team-based collaboration

– Results published for web browser based review by developers and quality engineers

– Dashboards to show quality metrics for project and safety managers




