MATLAB EXPO 2019

Du modèle au materiel : Solutions temps-réel pour prototypage rapide

Olivier Berard

Agenda

- 1. Why, What, How Hardware deployment?
- 2. Use cases details
- 3. Case study
- 4. Conclusions & what's next...

40% to 80% of Project Time

Save 40% to 80% of Time to Market

Conclusions

Why deploying model to Hardware?

- Control Prototyping: Physical plant test & characterization
- Production code: robust, maintenable & certified code for industrial product
- Verification: verifiy hardware controller

What can be modeled & deployed?

Use cases

Why, What, How

Conclusions

Case study

Why, What, How

Use cases

Case study

Conclusions

How to deploy? – MathWorks code generation tools

Conclusions

How to deploy? – Hardware targets

Conclusions

Rapid Control Prototyping

Conclusions

Rapid Control Prototyping (RCP)

Context

- Target undefined
- Algorithms exploration
- Requirements consolidation

Values

- Keep algorithm generic
- Refine interfaces
- Monitor & Identify plant

Algorithms under evaluation

A fully integrated Solution

📣 MathWorks®

Simulink Real-Time (SLRT)

- Control/physical modeling
- Test Automation
- Advance data analysis
- Code Gen (C/VHDL)

speedgoat real-time simulation and testing

Real-time Target Machines

- Modular hardware solutions
- Hardware driver library
- I/O-/protocol support
- Low latency FPGA-based solutions

Coordinated Customer Support

SLRT

Kernel

eal-tim

Who uses control prototyping and Why ?

Villanova University: Students compete at international level with a state-of-the-art autonomous robotic boat

"Data logging & monitoring capabilities have proved invaluable for debugging"

^{"Th} Mobileye: Driving technology towards a fully autonomous vehicle

ver

"With the Speedgoat system, changing parameters and tuning the system is very easy and straightforward. It saves us a lot of time. There's no need to re-compile and burn each new version of the control algorithm."

- Eyal Bagon, Senior Director Production Software and Development Coordination at Mobileye

Conclusions

On-Target Control Prototyping

Conclusions

On-Target Control Prototyping

Context

- Algorithms selected
- · Interfaces identified
- First target choice

Values

- Target choice validation
- Manage target specificities
- Minimum viable product

Algorithms for production

Development kit

Study case

Conclusions

On-Target Control Prototyping

Why, What, How

Use ca<u>ses</u>

Case study

Conclusions

Using Development Kits for Rapid Prototyping

Conclusions

Production Code Generation

Context

- Algorithms verified in simulation
- Target choice validated
- C/C++ code project started

Values

- Ease transfer from Algorithm to Software team
- Validated algorithms integration
- Code certification Workflow

Algorithms for production

Software project

© edipervendspace - C\UserVendspace - C\Us

Production hardware

Conclusions

Production Code Generation

Conclusions

A MathWorks

Who uses generated production code and Why?

Airbus Helicopters Accelerates Development of DO-178B Certified Software with Model-Based Design

"We use our system design model in Simulink for ARP4754 to establish stable, objective requirements. We save time by using the model as the basis for our software design model for DO-178—from which we generate flight code—and reusing validation tests for software verification."

- Ronald Blanrue, Airbus Helicopters

The Airbus Helicopters EC130 helicopter.

Challenge

Speed the development, validation, and verification of DO-178B certified helicopter flight software

Solution

Use Model-Based Design to model the system design and software design, and to generate flight code

Results

- Software testing time cut by two-thirds
- · Requirements stabilized earlier
- Certified flight software automatically generated

Why, What, How

Case study

Conclusions

📣 MathWorks

Hardware in The Loop

Unit Test

Load Test

Test Engine

Hardware In the Loop (HIL)

Context

- Hardware Control board ready
- Implemented production code

Values

- HW + SW verification
- Incremental verification
- Reuse Test Scenarios

Software project for production

Production hardware

System & Test Model

Who uses Hardware In the Loop and Why ?

Schindler Elevator Corporation: Validating Schindler's next generation elevator controller family with hardware-in-the-loop simulation

"We didn't want to have issues with the linking of the model and hardware, so we decided to work with Speedgoat.

The i Aalto University: Students' mission to get Finland's first satellite into orbit

so it

"The

"The cost of setting up and using a HIL solution is very low compared to performing all ADCS tests with a physical test setup emulating the orbit environment."

"The ability to perform HIL testing allows even the most complex satellite

— Mc mission operations to be verified on real hardware."

— Titu — Tuomas Tikka, Aalto University

Case Study

Applications

What do these applications have in common?

Many things...

Including Motor control

Hardware setup

Speedgoat Real Time Machine

Speedgoat DUT demo kit

Control objectives

Conclusions

Demonstration

Modeling & Simulation

Modeling & Simulation

Use cases

Case study

Why, What, How

Modeling & Simulation

Manual Test Harness

Configuration Selection

User Manual:

- > Click Down/Up button to set the number of step increment
- > Click Update to Move servo to the desired step increment.
- > Double click Update to Reset servo to offset value
- > Click Auto Button to start or stop Auto move

Modeling & Simulation

Automatic Test Harness

Conclusions

Modeling & Simulation

					- 0	×
				NO VOV XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
						_
	👗 📖 📄 🗠 📑	🕹 Import 🗳	?			
Delete Run Stop D	ebug Parallel Report Visualize Highlight	Export Preferences	Help			
EDIT BUN	In Model RESULTS	ENVIRONMENT	RESOURCES			-
wser Results and Artifacts	Step × A Start Page ×					
ortage e a tage test						
or tago, e.g. tago. teot	Step				✓ Enabled	
sts	TestPlan » Deskton Tests » Sten					
	Simulation Test					
	Select releases for simulation: Current	-				
		•				
ests	Create lest Case from External File					
eTest	▶ TAGS					
tenance Tests	► DESCRIPTION*					
	▶ REQUIREMENTS					
	▼ SYSTEM UNDER TEST*				?	
	Madel: dut algood loop Quitab					
	woder. dut_closed_loop_switch					
	▼ TEST HARNESS*					
	Hamess: Automatic TestHam	1955		• C #		
				C C		
	SIMULATION SETTINGS O	VERRIDES*				
	▼ PARAMETER OVERRIDES*				?	
	DADAMETED SET (WODKSDAGE VADIADI		201005			
	▼ Sweep 01	E OVERRIDE VALUE	SOURCE			
	✓ kl	0.5	dut_paramset.sldd	dut closed loop testManager Har		
Step	✓ kP	5	dut_paramset.sldd	dut closed loop testManager Har		
Simulation Test	▼ Sweep 02					
dut_closed_loop_Switch	√ kl	0.5	dut_paramset.sldd	dut_closed_loop_testManager_Har		
Automatic_TestHarness	✓ kP	10	dut_paramset.sldd	dut_closed_loop_testManager_Har		
[Model Settings]	▼ Sweep 03					
C:\Users\oberard\OneDrive	√ kl	0.5	dut_paramset.sldd	dut_closed_loop_testManager_Har		
TestPlan » Desktop Tests »				🕂 Add 👻 🥐 Refresh 🛛 Export 💼 Delete		
Type comma or space separal	► CALLBACKS*				?	
	► INPUTS				2	-

Modeling & Simulation - Run & Analyse tests

📣 Test Manager																						_		×
TESTS DATA INSPECTOR F	ORMAT															S.A.	Ŧ.S.	\times	$\langle X X \rangle$	XX	XV			
Subplots Clear Subplot Legend Q C ()	Q 25 Data Cursors	Highlight in Model	Send to Figu SHARE	ire Upo	late Base	line Pr F ANALYS	evious ailure F	Next Failure																Ā
Test Browser Results and Art	ifacts	🛅 Deskt	op Tests	×	Start Pa	ge ×	📉 Vi	sualize	×															
Filter results by name or tags, e.g. tags: tes	st 🔳 🍸	P	osition pu	Refe	rence>																			
NAME	STATUS		_																					
	2 💿 1 💿 🔶	Ŭ																						
	2 💿 1 💿																							
	0	-0.1																						
 Verify Statements 	0																							
✓ M Sim Output (dut_closed_loo	È.	-0.2									1													
Position_pu	•																							
<reference></reference>		-0.3																						
<command/>	•																							
<display></display>	·	-0.4																_	_					
Offset																								
Switches(1)		-0.5															1							
Position_pu										L														
LEDs(1)		-0.6																						
Switches(2)		0	0.5	1.0	1.5	2.0	2.5	3.0	3.6	5	4.0	4.5	5.0	5.5	e	3.0	3.5	7.0	7.5	8.0	8.5	9.0	9.	5 10.0
✓ Switches(3)		S	witches(1)	Switcl	nes(2)	Switch	es(3)																	
Switches(4)	•	1.0						_		_	_	_												
LEDs(2)	•																							
LEDs(3)	•																							
LEDs(4)		0.8								-														
▼ ■ Auto	0																							
Verity Statements	0	0.6																						
► M Sim Output (dut_closed_loo	¢.	0.0																						
	0																							
✓ Werity Statements	0	0.4			_	-				-	_		++	_										
CheckPositionRange	0																							
CheckVoltageRange	0																							
Check Command over	0	0.2																						
Check position error	•																							
4	•	0																				—		
		0	0.5	1.0	1.5	2.0	2.5	3.0	3.6	5	4.0	4.5	5.0	5.5	6	3.0	3.5	7.0	7.5	8.0	8.5	9.0	9.	5 10.0

35

Conclusions

Rapid Control Prototyping

Conclusions

Rapid Control Prototyping

CheckPositionRange

CheckPositionRange

Why, What, How

Study case

Conclusions

Rapid Control Prototyping - Run & Analyse tests

📣 Test Manager																_		×
TESTS DATA INSPECTOR F	ORMAT							jer Sv				AL.		XXX)	XX			
New Open Save	Run selected item	s in test bro	owser (Ctrl+T)		ighlight 🖉 E	mport Export Pi	Preferences	? Help										
FILE EDIT	Switch to the test	browser to	select and rur	n a test ESUL	.TS	EN	/IRONMENT	RESOURCES										
Test Browser Results and Art	tifacts	Auto	× 🕅 S	Start Page	× 🔽 Cor	nparison	×											
Filter results by name or tags, e.g. tags: te	st 🔳 🗑		Position pu (F	Raseline)	Position pu (Compare T	o) 🗖 Tolera	nce										
NAME	STATUS		r osition_pa (t		r osmon_pa (oompare r												
✓ Results: 2019-Jun-05 15:34:36	10								\wedge		1				1	<u>^</u>	<u> </u>	
	10	0.4																
▼ 🗐 Auto	0																	
👻 📓 Equivalence Criteria Result	0								1									
Position_pu	0	0.2																
C <reference></reference>	0																	
O <command/>	0	0 🗩			······													_
<pre>O <display></display></pre>	0																	
Offset	0	-0.2																
 Switches(1) 	0											N N						
O Position_pu	0								/			N N						
O LEDs(1)	0	-0.4																
 Switches(2) 	0					b						- V-						
 Switches(3) 	0		0.5	10 14		2.5		5 40	4.5	50 F	5 80		7.0 7	E 00			0.5	10.0
 Switches(4) 	0		0.0	Telerenee	2.0	2.5	3.0 3	.5 4.0	4.5	5.0 5	.5 0.0	0.5	1.0 1	.0 0.0	0.0	9.0	9.5	10.0
O LEDs(2)	0	_	Dillerence	Tolerance														_
O LEDs(3)	0	0.08										A						
O LEDs(4)	0	0.00										1						
✓ I Verify Statements 1	0	0.04																
CheckPositionRange	0	0.01				4					I							
CheckVoltageRange	0	0.02			, ji	1												
Check Command over	. 0											- L						
Check position error	0		a a star a s				and the set black	allel and		Mucours			· · · · · · · · · · · · · · · · · · ·	a tiber dette		1 miles		albina
 Verify Statements 2 	0		A CARLENS AND A CARLENS		h H Hadidad	W.R.W	Milliona thada	NUMBER OF STREET					New Street of Concession	and a strength of the				
► M Sim Output 1 (dut_closed_le	0	-0.02														 		
► 🖂 Sim Output 2 (AutomaticFile	e_																	
4	Þ	-0.04							W						W	 		
DRODEDTY VALUE		0	0.5	1.0 1.5	5 2.0	2.5	3.0 3.	.5 4.0	4.5	5.0 5	.5 6.0	6.5	7.0 7	.5 8.0	8.5	9.0	9.5	10.0

Production Code

Why, What, How

Use cases

Case study

Conclusions

Why, What, How

Case study

Conclusions

Hardware in The Loop

Hardware in The Loop

Conclusions

Conclusions

Hardware in The Loop

Conclusions

- Hardware deployment use cases
 - Control Prototyping
 - Production code
 - Hardware verification
- Fully integrated solutions
 - Simulink Real Time & Speedgoat Real-Time machines
 - Hardware support packages
 - From specification to Hardware verification in a single environment
- Retrieve your time to do more & better innovative products

What's next...

- Contact us to...
 - Define together your MBD implementation plan
 - Build together your project and model architecture
 - Train yourselve & your team
- More informations online...
 - Embedded systems page
 - <u>Simulink Real Time & Speedgoat</u> Solutions
 - <u>Supported Hardware page</u>