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Condition indicators
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IOT, data collection 

Digital twin
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Demo: Analog Input Recorder App
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Demo: Signal Analyzer App
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Demo: Diagnostic Feature Designer App
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RUL
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RUL is based on time evolution of condition indicator

t

RUL

fit(mdl, data)

predict(mdl, threshold)
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= f( )

System Identification
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= f( )

System Identification Predictive Maintenance
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Off-the-shelf RUL models



33

Off-the-shelf RUL models
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Off-the-shelf RUL models: Similarity model
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Off-the-shelf RUL models
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Off-the-shelf RUL models: Exponential Degradation model
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What is a Digital Twin ?
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Model aiming at being used in operation

Faithful, up-to-date representation of asset

Composite of modeling approaches – data or physics



45

Model aiming at being used in operation
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Why a Digital Twin?



49

Predictive Maintenance

Prediction
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Anomaly Detection
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How do I build a Digital Twin?
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FSpring = kSpring*(xMass)

FDamper = bDamper*(
dxMass

dt
)

d2xMass

dt2
=
−FSpring − FDamper

mMass

Input/Output Block Diagram Simscape
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based on MATLABeasy to learn

Simscape Component
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The model can be used to generate training data for the machine learning
algorithm and to test the deployed algorithm.
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IT Systems Smart assets OT InfrastructureEdge systems

Actual applications?
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MathWorks can help you get started TODAY

▪ Examples

▪ Documentation

▪ Tutorials & Workshops

▪ Consulting

▪ Tech Talk Series

https://www.mathworks.com/help/predmaint/examples.html
https://www.mathworks.com/help/predmaint/index.html
https://www.mathworks.com/services/consulting/proven-solutions/predictive-maintenance.html
https://www.mathworks.com/videos/predictive-maintenance-part-1-introduction-1545827554336.html

