## MATLAB EXPO 2019

Planning Simulink Model Architecture and Modeling Patterns for ISO 26262 Compliance

**Dave Hoadley** 





#### **ISO 26262 "Road Vehicles - Functional Safety"**



- ISO 26262 is a functional safety standard for road vehicles
- MathWorks has seen an increased interest in ISO 26262 compliant workflows
  - Increase in System Complexity
  - Demand from ADAS and AD related applications
- ISO 26262 facilitates modern software engineering concepts



#### **Challenges with ISO 26262**

- Do I have an ISO 26262 compliant workflow?
- How to efficiently reach unit testing coverage criteria?
- How to achieve Freedom from Interference?
- Can we use **AUTOSAR** and meet ISO 26262 at the same time?
- Is **Simulink suitable for use** for ISO 26262?



# ISO 26262-6:2018 notes Simulink and Stateflow as Suitable for Software Architecture, Design and as basis for Code Generation

| Table 5 — Notations for software unit design                                                                                                                                                                                                   |                                                                                                                                                                                                                         |    |    |      |    |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|------|----|--|--|--|
| Natationa                                                                                                                                                                                                                                      |                                                                                                                                                                                                                         |    |    | ASIL |    |  |  |  |
|                                                                                                                                                                                                                                                | Notations                                                                                                                                                                                                               |    |    | С    | D  |  |  |  |
| 1a                                                                                                                                                                                                                                             | Natural language <sup>a</sup>                                                                                                                                                                                           | ++ | ++ | ++   | ++ |  |  |  |
| 1b                                                                                                                                                                                                                                             | Informal notations                                                                                                                                                                                                      | ++ | ++ | +    | +  |  |  |  |
| 1 <b>c</b>                                                                                                                                                                                                                                     | Semi-formal notations <sup>b</sup>                                                                                                                                                                                      | +  | +  | ++   | ++ |  |  |  |
| 1d                                                                                                                                                                                                                                             | Formal notations                                                                                                                                                                                                        | +  | +  | +    | +  |  |  |  |
| a<br>natu                                                                                                                                                                                                                                      | a Natural language can complement the use of notations for example where some topics are more readily expressed in<br>natural language or provide an explanation and rationale for decisions captured in the notations. |    |    |      |    |  |  |  |
| EXAMPLE To avoid possible ambiguity of natural language when designing complex elements, a combination of an activity<br>diagram with natural language can be used.                                                                            |                                                                                                                                                                                                                         |    |    |      |    |  |  |  |
| b                                                                                                                                                                                                                                              | b Semi-formal notations can include pseudocode or modelling with UML®, SysML®, Simulink® or Stateflow®.                                                                                                                 |    |    |      |    |  |  |  |
| NOTE UML®, SysML®, Simulink® and Stateflow® are examples of suitable products available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of these products. |                                                                                                                                                                                                                         |    |    |      |    |  |  |  |
| NOT<br>the s                                                                                                                                                                                                                                   | NOTE In the case of model-based development with automatic code generation, the methods for representin the software unit design are applied to the model which serves as the basis for the code generation.            |    |    |      |    |  |  |  |



## **MathWorks Support**



- IEC Certification Kit
  - Model-Based Design Reference Workflow
    - Proven in use
  - Tool Qualification Package
    - Software Tool Criteria Evaluation Report
    - Software Tool Qualification
    - Tool Validation Suite





LG Chem Develops ISO 26262 ASIL C AUTOSAR-compliant Software for a Hybrid Vehicle Battery Management System for the Volvo XC90

"Model-Based Design enables us to increase component reuse, reduce manual coding, improve communication with our customers, and ultimately deliver higher-quality BMS in less time." - Won Tae Joe, LG Chem



## MathWorks Support for ISO 26262 Certification Kit

 Applicable Model-Based Design Tools and Processes



#### Mapping between ISO requirements to Model-Based Design toolchain

| Meth                                                             | Methods    |     | A.      | SIL | D    | Applicable Model-<br>Based Design Tools                                                                                                               | Comments                                                                                                                                                                                                                                                                                                                                  |  |
|------------------------------------------------------------------|------------|-----|---------|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Methods     1c   MC/DC (Modified<br>Condition/Decision Coverage) |            | +   | A B C D |     | ++   | Simulink Coverage –<br>Model coverage analysis<br>Simulink Design Verifier<br>– Test case generation<br>Simulink Coverage –<br>Code coverage analysis | During model testing, Simulink Coverage<br>verification can collect MC/DC coverage at the<br>model level.<br>Simulink Design Verifier can be used to<br>generate test cases that satisfy MC/DC<br>coverage at the model level.<br>During SIL and PIL execution, Simulink<br>Coverage can measure MC/DC coverage of the<br>generated code. |  |
|                                                                  | ISO Requii | rem | nen     | t   | Mode | el-Based Design                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                           |  |



## MathWorks Support for ISO 26262 **Certification Kit**

- Applicable Model-Based Design **Tools and Processes**
- Model-Based Design reference workflow



- Overall MBD workflow
- Tools/Features:
  - Embedded Coder
  - Simulink Check
  - Simulink Coverage
  - Simulink Test
  - Polyspace Bug Finder
  - **Polyspace Code Prover**



## MathWorks Support for ISO 26262 **Certification Kit**

Incorrect run of

test procedure

[SLTEST\_E3]

assessment of

indicated as failed

test results -

passed test

Erroneous

UC11

[SLTEST

UC2]

[SLTEST

UC3]

TI1

TI2

procedure could

object under test from being detected.

prevent errors in an

Nuisance only, failed

manually reviewed

tests have to be

and explained by

user

- Applicable Model-Based Design **Tools and Processes**
- Model-Based Design reference workflow
- **Tool Qualification Package** 
  - Software Tool Criteria Evaluation Report
  - Software Tool Qualification Report

| <b>C Certification K</b><br>nulink <sup>®</sup> Test™<br>D 26262 Tool Qua | <b>it</b><br>alification Pa          | ackage | e                                                                                                                |                                              |                  |                                                                                                                                                                                                                                                                                                                   |              |
|---------------------------------------------------------------------------|--------------------------------------|--------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Potential                                                                 | Use Cases                            | ТІ     | Justification for TI                                                                                             | Fool Confi<br>+ Othe<br>Prevention /         | den<br>er q<br>™ | uce Level determin<br>ualification artifac                                                                                                                                                                                                                                                                        | natior<br>ts |
| Malfunction or<br>Erroneous Output                                        |                                      |        |                                                                                                                  | Detection Measures                           |                  |                                                                                                                                                                                                                                                                                                                   |              |
| [SLTEST_E1]<br>Incorrect behavior<br>of test harness                      | [SLTEST<br>_UC1]<br>[SLTEST<br>_UC2] | TI2    | Incorrect behavior of<br>test harness could<br>prevent errors in an<br>object under test<br>from being detected. | [SLTEST_M1]<br>Requirements-based<br>testing | TD1              | The test cases and expected results are<br>derived from requirements independen<br>of the model under test and the test<br>environment. The independence<br>provides a high degree of confidence<br>that errors will be detected using the<br>actual results from the model under test<br>in the test environment | TCL1         |
| [SLTEST_E2]                                                               | [SLTEST                              | TI2    | Incorrect run of test                                                                                            | [SLTEST M1]                                  | TD1              | Requirements-based testing will detect                                                                                                                                                                                                                                                                            | TCL1         |

Requirements-based

TD3

testing

None

incorrect run of test procedure, see TD

justification for [SLTEST E1]

TCL1

TCL3



#### **Modeling Best Practices for ISO 26262**

- Architecture
- Signal Routing
- Data Definition
- Code Generation Configuration



This Photo by Unknown Author is licensed under <u>CC BY-NC-ND</u>

(Excerpts from our white paper

- Please request www.mathworks.com/services/consulting/contact.html)

### Use Model Metrics to Monitor Unit Complexity Architecture

- Issues:
  - Model verification gets increasingly difficult
  - Unable to efficiently achieve unit coverage
- Best Practice:
  - Monitor complexity metrics
    - Interfaces
    - Reusable libraries
    - Cyclomatic complexity (<=30)\*</li>
    - Number of elements (<500)\*</li>
    - Style and standards conformance
- Reference:
  - \*Paper: Model Quality Objectives
    - Authors: Jérôme Bouquet(Renault), Stéphane Faure(Valeo), Florent Fève(Valeo), Ursula Garcia(Bosch), François Guérin(MathWorks), Thierry Hubert(PSA), Florian Levy(Renault), Stéphane Louvet(Bosch), Patrick Munier(MathWorks), Pierre-Nicolas Paton(Delphi), Alain Spiewek(Delphi), and Yves Touzeau(Renault)







#### Use Model Reference for Unit Level Model Simulink Architecture

- Issues:
  - Poor modularity of algorithm (reuse)
  - Unable to preform unit level testing
  - Configuration Management difficulties
  - Unable to achieve Freedom from Interference
- Best Practice
  - Use Model Reference for unit level model
  - Group units to form functional hierarchy (features/components) with virtual Subsystems





## Split ASIL and QM Levels at Top Level of Control Model

#### **Simulink Architecture**

- Issues:
  - Difficulty in achieving Freedom from Interference
  - Complexity in code integration
- Best Practice:
  - Code generation should be done at as high as level as possible.

| Model Hierarchy       | Modeling Pattern            |
|-----------------------|-----------------------------|
| Top level (ASIL / QM) | Model Reference             |
| Integration           | Subsystem (multiple layers) |
| Unit                  | Model Reference             |





#### Data Protection Between ASIL and QM Levels Code Generation Configuration

- Issues:
  - How to provide signal protection between ASIL and QM functions?





Code generation options

Custom attributes

GetFunction: get \$N

SetFunction: set\_\$N

HeaderFile:

Storage class: GetSet (Custom)

#### **Data Protection Between ASIL and QM Levels Code Generation Configuration**

- Issues:
  - How to provide signal protection between ASIL and **QM** functions?
- Best Practice
  - Use Get/Set storage class for signals between ASIL and QM levels



#### **Get/Set Storage Class**

Dimensions mode:

Complexity

Sample time

>>

🛐 Simulink.Signal: unit3\_sig2

Code generation options Storage class: GetSet (Cus

GetFunction: get \$N

set \$N

Custom attribute

HeaderFile

SetFunction:

Data type: uint8

Dimensions:

nitial value:

inimum:



#### Eliminate Algorithm Content at Integration Level **Architecture**

- Issues:
  - Complexity in integration level testing \_\_\_\_
  - Difficult tracing of requirement ⇔ design ⇔ test —
- **Best Practice:** 
  - Ensure only virtual blocks are at the integration level —
  - Reference (MAAB/JMAAB): db\_0143: Similar block types on the model levels





### Use Different Name Token for Shared Utility Code Generation Configuration

- Issues:
  - ASIL and QM level uses the same shared utility code
- Best Practice:
  - Configure Shared Utility Identifier

| Configuration Parameters: Configuration                                                                                       | Model Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | onfigu            | uration/Code Generati                                                                                                                                  | ion/Symbols                                    |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Search         Solver         Data importifizorit         Math and Data Types         > Diagnostics         Model Referencing |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                        |                                                |
| Simulation Target                                                                                                             | dt: (a consideration for the second s | Bross Bross Bross | Shared checksum length:<br>EMX array utility functions identifier format:<br>EMX array types identifier format:<br>Shared utilities identifier format: | 8<br>emx\$M\$N<br>emxArray_\$M\$N<br>\$N\$C_QM |





### **Design Bus Hierarchy Signal Routing**

#### Issues:

- Inefficient bus segmentation
- Inconsistent bus grouping by developers
- Modeling difficulty from splitting and recreating bus signals
- Best Practice:
  - Bus hierarchy should be designed as a function of ASIL levels, QM, and rates at a minimum.





#### Pass Only Used Signal into Unit Signal Routing

- Issues:
  - Hundreds/Thousands input signals causing difficulties in verification flow
- Best Practice:
  - Use Bus Selector to send only used signals into Unit
  - Add additional virtual Subsystem to encapsulate the Bus manipulation before and after the unit





#### **AUTOSAR Implications**

- AUTOSAR
  - adds complexity due to additional tool ecosystem
  - but makes some things simpler
    - Get/Set function would be implemented using Send/Receiver port with RTE protection
- Best Practices discused are consistent with our <u>AUTOSAR Blockset</u>

- Reference Workflow shown in IEC Certification Kit supports AUTOSAR
  - Simulation
  - Code generation
  - Verification

| Application Layer            |      |     |  |  |  |  |
|------------------------------|------|-----|--|--|--|--|
| SWC1                         | SWC2 | SWC |  |  |  |  |
| Run Time Environment (RTE)   |      |     |  |  |  |  |
| Basic Software               |      |     |  |  |  |  |
| Layered AUTOSAR Architecture |      |     |  |  |  |  |



#### **MathWorks Support**

#### ISO 26262 Consulting Services

- Process establishment
  - Development Processes
  - Verification process
  - Gap analysis
- Tool qualification support
  - Analyze customer specific tools
  - Provide guidance on tool qualification activities

#### ISO 26262 Process Deployment Advisory Service

MathWorks Consulting Services works with you to migrate your existing process—whether based on manual methods or Model-Based Design—to a process framework for using Model-Based Design with ISO 26262. Customized to your specific environment, tools, and application, the ISO 26262 Process Deployment Advisory Service identifies gaps in your current processes, develops a road map to a more optimized process framework using Model-Based Design, and works with you to deploy that road map.



"We leveraged MathWorks consultants to apply Model-Based Design for ISO

26262 on our new Integrated Restraints and Braking Controller (IRBC) developed with Simulink, Stateflow, Simulink Design Verifier, and Embedded Coder for production code generation and verification."



#### Summary

#### Modeling Best Practice for ISO 26262

- Use Model Reference for Unit Level Model
- Split ASIL and QM Levels at Top Level of Model
- Eliminate Algorithm Content at Integration Level
- Use Model Metrics to Monitor Unit Complexity
- Pass Only Used Signal into Unit
- Design Bus Hierarchy

- Modeling Construct for Data
- Data Protection Between ASIL and QM Levels
- Partition Different ASIL levels and QM to Separate Memory Section
- Use Different Name Token for Shared Utility
- AUTOSAR Implications

- Further information?
  - Please see mathworks.com/services/consulting/proven-solutions/iso26262.html
  - Contact me <u>dhoadley@mathworks.com</u>
  - Stop by the ISO 26262 table