

Leveraging MATLAB-Simulink in Building Battery State-of-Health Estimation Pipelines for Electric Vehicles

Matthew Daigle, Principal Scientist, Artificial Intelligence Nilesh Kulkarni, Director, Artificial Intelligence

NIO USA

Artificial Intelligence Team Overview

Team

- About 25 full-time employees
- Average experience 12 years

Projects

- Autonomous Driving: Trajectory Planning, Decision Making
- Vehicle AI: Smart Controls, Diagnostics & Prognostics

Motivation

- In electric vehicles, understanding battery State-of-Health (SOH) is critical
 - Powertrain performance
 - Range estimation
 - Fleet management
 - Service operations

Challenges

- In the product design phase, battery data is available only under laboratory and limited driving conditions
 - No existing fleet
 - Limited in-vehicle data collection
 - Data for only specific driving conditions
- However, to build an analytics stack focused on monitoring battery SOH and predicting battery life, we need lots of data

Solution: Scalable simulation-based data generation deployed in the cloud

Cloud-based Architecture

Outline

Vehicle Simulation	Li-ion Cell Models Powertrain Vehicle Dynamics Driving Conditions
Battery Analytics	SOH Estimation SOH Prediction
Cloud Deployment	Code Generation Simulation as a Service Batch Simulations Analytics Dashboards

Vehicle Simulator

Vehicle Simulation Summary

Driver Model

- Inputs
 - Desired waypoint (latitude, longitude)
 - Desired speed
- Outputs
 - Accelerator pedal position
 - Brake pedal position
 - Steering wheel angle

Vehicle Model

- Inputs
 - Ambient temperature
 - Accelerator pedal position
 - Brake pedal position
 - Steering wheel angle
 - Road type and angle
 - HVAC controls
 - Accessory controls
- Outputs
 - Voltages, currents, temperatures
 - Speed, acceleration
 - Latitude, longitude
 - Etc.

Vehicle Simulation Summary

- Electrical
 - Cell models and battery configuration
 - Cell/battery health degradation
 - Motor and inverter efficiency and losses
 - Torque/current limits
 - Regenerative braking
 - Charging
 - HVAC
 - Thermal management
- Mechanical
 - Drag
 - Road type
 - Brakes
 - Driver model
- Sensors
 - Speed, brake pressures, voltages, currents, etc.
- Fault injection via parameter changes

Brakes Sliding-Mode

Normal Force

Wheel Speed

Pedal Position Pressure

Master Cylinder

Vehicle acceleration

Road incline

Vehicle speed

Road type

Motor Torque Command

Rotational Motor Spe

Shaft Torque

Battery Power

Inverter Loss

		Battery Voltage				
		Battery SOC				
		Battery OC				
>	Ambient Temperature	Battery Temperature				
		Half-Pack Voltage				
		Half-Pack Curren				
		Half-Pack SOC				
		Module Voltage				
		Module SOC				
		Block Voltage				
١,	Battery Current	Block SOC				
1		Cell Voltage				
		Cell SO				
	Ŧ	SOC (Surface				
1	Battery					
1	Battery Power Demand FI					
1						
>	Battery Power Demand FR	D-0				
		Plattery Lainte				
	Detters Design Demond DI	ballory ballo				
1	Battery Power Demand RL	balloty conto				
\$	Battery Power Demand RL Battery Power Demand RR	banory ouro				
>	Battery Power Demand RL Battery Power Demand RR	balloty curre				
> >	Battery Power Demand RL Battery Power Demand RR Battery Power Demand Aux					
> > >	Battery Power Demand RL Battery Power Demand RR Battery Power Demand Aux Battery Voltage	Battery Pow				
/ > >	Battery Power Demand RL Battery Power Demand RR Battery Power Demand Aux Battery Voltage	Battery Pow				
/ > > >	Battery Power Demand RR Battery Power Demand RR Battery Power Demand Aux Battery Voltage Qearging On/Off	Battery Pow				
/ > > >	Battery Power Demand RL Battery Power Demand RR Battery Power Demand Aux Battery Voltage Qharging On/Off BMS	Battery Pow				
/ > > >	Battery Power Demand RL Battery Power Demand RR Battery Power Demand Aux Battery Voltage Charging On/Off BMS	Battery Pow				
	Battery Power Demand RL Battery Power Demand RR Battery Voltage Charging On/Off BMS Charging On/Off	Battery Pow				

Charging Control

	Open Circuit Voltage			
	Cell Temperature			
	SOC (Surface)			
Lithium	n Ion Cell			
	Motor Torque Crnd FL			
cel. Pedal Position	Motor Torque Cmd FR			
	Motor Torque Cmd RL			
ake Pedal Position	Motor Torque Cmd RR			
Motor Controller				
Motor Torque Cor	Shaft Torque > nmand Shaft Power >			
	Battery Power			

Ambient Temperature

Cell Voltage

Motor-Inverter Power Map

Lights On/Off				
Entertainment On/Off	Aux. Power			
HVAC Power				
Auxiliary Loads				

Simulation Architecture

Battery Analytics

Prognostics Architecture

System gets input and produces output

Estimation module estimates the states and parameters, given system inputs and outputs

- Must handle sensor noise
- Must handle process noise

For some event E, e.g., end of discharge (EOD) or end of life (EOL), prediction module predicts k_E

- Must handle state-parameter uncertainty at time of prediction
- Must handle future process noise trajectories
- Must handle future input trajectories (battery loads)

In model-based approaches, require a dynamic model of the battery

Lithium Ion Chemistry

Discharge

Positive electrode is cathode, negative electrode is anode Reduction at pos. electrode:

 $Li_{1-n}CoO_2 + nLi^+ + ne^- \rightarrow LiCoO_2$

Oxidation at neg. electrode:

 $Li_nC \rightarrow nLi^+ + ne^- + C$

Current flows + to –, electrons flow – to +, lithium ions flow – to +

Charge

Positive electrode is anode, negative electrode is cathode Oxidation at pos. electrode:

 $LiCoO_2 \rightarrow Li_{1-n}CoO_2 + nLi^+ + ne^-$

Reduction at neg. electrode:

nLi⁺ + ne⁻ + C → Li_nC

Current flows – to +, electrons flow + to –, lithium ions flow + to –

Cell Discharge Modeling

- Lumped-parameter, ordinary differential equations
- Capture voltage contributions from different sources
 - Equilibrium potential →Nernst equation with Redlich-Kister expansion
 - Concentration overpotential → split electrodes into surface and bulk control volumes
 - Surface overpotential → Butler-Volmer equation applied at surface layers
 - Ohmic overpotential → Constant lumped resistance accounting for current collector resistances, electrolyte resistance, solid-phase ohmic resistances

Battery Aging Modeling

Aging results in two major qualitative effects on dynamics:

- Loss of capacity (due to diffusion stress, irreversible parasitic side reactions)
- Increase in internal resistance (due to solid electrolyte interface layer growth)

Capture with changes in three age-related parameters:

- q_{max} (max available charge)
- R_o (Ohmic resistance)
- D (diffusion rate parameter)

Battery Aging Modeling

Given a discharge cycle, can estimate age-related parameters and determine how they change over time

- Assume rate of change of age parameters is of form w*|i_{applied}|
- w is aging rate parameter, i_{applied} is applied current

Defining End of Life (EOL)

Capacity is measured in Ah for a given discharge cycle

- But, end of discharge (EOD) is dependent on the load, so capacity measurement will be different depending on how battery is used
- Only meaningful to measure capacity w/r/t reference conditions
- For given age parameters, can use model to simulate a reference discharge and compute corresponding capacity

State of Health Estimation

NIO 10/22/19

Battery Analytics

Health Estimation

- For each trip, take pack voltage, current, and temperature
- Estimate battery state of charge (SOC) using unscented Kalman filter (UKF)
- Estimate current values of aging parameters over the trip
- Map aging parameters to current battery capacity/state of health (SOH)

State of Health Prediction

- Obtain SOH estimates for all previous trips
- Determine expected future battery loads
- Fit aging model (e.g., linear regression)
- Predict time/miles at which SOH will fall below 80%

Other Metrics

• Powertrain efficiency, trip energy regenerated, etc.

Cloud Deployment

Simulation Deployment

Battery Analytics Deployment

- Algorithms are prototyped in MATLAB implemented in Python
 - For each vehicle
 - Queries data for a trip from Elasticsearch
 - Runs analytics algorithms on the trip data
 - Pushes results back to Elasticsearch
 - Results include time-based analytics (e.g., state-of-charge) and trip summary metrics (e.g., SOH)
- Implemented as a batch job that is Dockerized

Battery Pack

Cells & Subsystems

Conclusions

Summary

- Simulations executed on request basis or in batch mode
- Dashboards combining vehicle- and fleet-level metrics built from Elasticsearch data source
- Automated pipelines running on test vehicles
- Deployment to production in progress

Next Steps

- Scalability
- Validation with customer data
- Connection to service operations