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Team

• About 25 full-time employees

• Average experience 12 years

Projects

• Autonomous Driving: Trajectory Planning, Decision Making

• Vehicle AI: Smart Controls, Diagnostics & Prognostics

Artificial Intelligence Team Overview



• In electric vehicles, understanding 
battery State-of-Health (SOH) is critical

• Powertrain performance

• Range estimation

• Fleet management

• Service operations

Motivation
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• In the product design phase, battery data is available only under laboratory and limited driving 
conditions

• No existing fleet

• Limited in-vehicle data collection

• Data for only specific driving conditions

• However, to build an analytics stack focused on monitoring battery SOH and predicting battery 
life, we need lots of data

Solution: Scalable simulation-based data generation deployed in the cloud

Challenges
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Cloud-based Architecture
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Cloud 
Deployment
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Outline
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Vehicle Simulator
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Vehicle Model

• Inputs

• Ambient temperature

• Accelerator pedal position

• Brake pedal position

• Steering wheel angle

• Road type and angle

• HVAC controls

• Accessory controls

• Outputs

• Voltages, currents, temperatures

• Speed, acceleration

• Latitude, longitude

• Etc.

Driver Model

• Inputs

• Desired waypoint (latitude, longitude)

• Desired speed

• Outputs

• Accelerator pedal position

• Brake pedal position

• Steering wheel angle

Vehicle Simulation Summary
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• Electrical

• Cell models and battery configuration

• Cell/battery health degradation

• Motor and inverter efficiency and 
losses

• Torque/current limits

• Regenerative braking

• Charging

• HVAC

• Thermal management

• Mechanical

• Drag

• Road type

• Brakes

• Driver model

• Sensors

• Speed, brake pressures, voltages, 
currents, etc.

• Fault injection via parameter changes

910/22/19

Vehicle Simulation Summary



Simulation Architecture
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Battery Analytics
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System gets input and produces output

Estimation module estimates the states and parameters, given system inputs and outputs

• Must handle sensor noise

• Must handle process noise

For some event E, e.g., end of discharge (EOD) or end of life (EOL), prediction module predicts kE

• Must handle state-parameter uncertainty at time of prediction

• Must handle future process noise trajectories

• Must handle future input trajectories (battery loads)

In model-based approaches, require a dynamic model of the battery

Prognostics Architecture
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Battery Estimation Prediction

u(k) u(k), y(k) p(x(k),θ(k)) p(kE)
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Charge
Positive electrode is anode, negative electrode is cathode

Oxidation at pos. electrode:

LiCoO2 à Li1-nCoO2 + nLi+ + ne-

Reduction at neg. electrode:

nLi+ + ne- + C à LinC
Current flows – to +, electrons flow + to –, lithium ions flow 
+ to –

Discharge
Positive electrode is cathode, negative electrode is anode

Reduction at pos. electrode:

Li1-nCoO2 + nLi+ + ne- à LiCoO2

Oxidation at neg. electrode:

LinC à nLi+ + ne- + C
Current flows + to –, electrons flow – to +, lithium ions flow 
– to +

Lithium Ion Chemistry
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• Lumped-parameter, ordinary differential 
equations

• Capture voltage contributions from 
different sources

- Equilibrium potential àNernst equation 
with Redlich-Kister expansion

- Concentration overpotential à split 
electrodes into surface and bulk control 
volumes

- Surface overpotential à Butler-Volmer
equation applied at surface layers

- Ohmic overpotential à Constant 
lumped resistance accounting for 
current collector resistances, electrolyte 
resistance, solid-phase ohmic resistances

Cell Discharge Modeling
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Aging results in two major qualitative effects on 
dynamics:

• Loss of capacity (due to diffusion stress, 
irreversible parasitic side reactions)

• Increase in internal resistance (due to solid 
electrolyte interface layer growth)

Capture with changes in three age-related 
parameters: 

• qmax (max available charge)

• Ro (Ohmic resistance)

• D (diffusion rate parameter)

Battery Aging Modeling
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Model fit at halfway 
to EOL (random 

discharge)



Given a discharge cycle, can estimate age-related parameters and determine how they change 
over time

• Assume rate of change of age parameters is of form w*|iapplied|

• w is aging rate parameter, iapplied is applied current

Battery Aging Modeling

10/22/19 16



Capacity is measured in Ah for a given discharge cycle

• But, end of discharge (EOD) is dependent on the load, so capacity measurement will be 
different depending on how battery is used

• Only meaningful to measure capacity w/r/t reference conditions

• For given age parameters, can use model to simulate a reference discharge and compute 
corresponding capacity

Defining End of Life (EOL)
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EOL defined as 50% 
capacity as measured 
at reference 
conditions.



State of Health Estimation
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Health Estimation

• For each trip, take pack voltage, current, and temperature

• Estimate battery state of charge (SOC) using unscented Kalman filter (UKF)

• Estimate current values of aging parameters over the trip

• Map aging parameters to current battery capacity/state of health (SOH)

State of Health Prediction

• Obtain SOH estimates for all previous trips

• Determine expected future battery loads

• Fit aging model (e.g., linear regression)

• Predict time/miles at which SOH will fall below 80%

Other Metrics

• Powertrain efficiency, trip energy regenerated, etc.

Battery Analytics



Cloud Deployment
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Simulation Deployment
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Vehicle 
Simulator

Driver + Vehicle 
Model  (C++ 

generated with 
Simulink Coder)
100x real time

Data Store
Telemetry

REST API
Simulation Request:
• Single vehicle trip simulation
• Batch simulations for vehicle 

lifetime with battery 
degradation



• Algorithms are prototyped in MATLAB implemented in Python

• For each vehicle

• Queries data for a trip from Elasticsearch

• Runs analytics algorithms on the trip data

• Pushes results back to Elasticsearch

• Results include time-based analytics (e.g., state-of-charge) and trip summary metrics (e.g., 
SOH)

• Implemented as a batch job that is Dockerized

Battery Analytics Deployment
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Summary

• Simulations executed on request basis or in batch mode

• Dashboards combining vehicle- and fleet-level metrics built from Elasticsearch data source

• Automated pipelines running on test vehicles

• Deployment to production in progress

Next Steps

• Scalability

• Validation with customer data

• Connection to service operations

Conclusions
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