MATLAB EXPO 2019

Adopting Model-Based Design for
FPGA, ASIC, and SoC
Development

¢

Robert Anderson ’

Principal Application Engineer - MathWorks ’ ‘ ‘

| &\ MathWorks

Agenda

)) - Why Model-Based Design for FPGA, ASIC, or SoC?

- How to get started
— General approach — collaborate to refine with implementation detail
— Re-use work to help RTL verification
— Hardware architecture
— Fixed-point quantization
— HDL code generation
— Chip-level architecture

= Customer results

MATLAB EXPO 2019

4\ MathWorks

FPGA, ASIC, and SoC Development Projects

67% of ASIC/FPGA projects are behind schedule
Over 50% of project time is spent on verification
Q1 QZZQGQS Q4 Q1 zoég
75% of ASIC projects require a silicon re-spin i '1
[|
= |

84% of FPGA projects have non-trivial
bugs escape into production

MATLAB EXPO 2019 Statistics from 2018 Mentor Graphics / Wilson
Research survey, averaged over FPGA/ASIC 3

4\ MathWorks

Many Different Skill Sets Need to Collaborate

Poor communication across teams
RESEARCH REQUIREMENTS Key decisions made in silos

System-level issues found in late stages
SPECIFICATIONS Hard to adapt to changing requirements

System Architecture — ' _
Rapid innovation under a rapid

SPECIFICATIONS =reessesssmssnssanssnnnansd forscsvssscnmsnsnnnnna, timeline — that's when this flow falls

apart.”
Jamie Haas
Algorithms Allegro Microsystems
SPECIFICATIONS -------------- @ ------------------------- @ ------------------------ @ -------------- g
Embedded Digital i Analog
Software ~ : Hardware i Hardware : Verification
MATLAB EXPO 2019 System Integration

4\ MathWorks

Abstraction vs Design Space Exploration

Abstraction Level

Effort required to move across design space

MATLAB EXPO 2019

4\ MathWorks

Cost of Finding a Bug vs Location in Design Cycle

Requirements

Location In
Design Cycle High Level Msdeling/Verification

Model EIaboration/Fised-Point Conversion
RTL Designh and HDL Verificatiog

Place and Route/Floor-planning

—
Integration and Validation Test i
Post — Production/Product Launch i

MATLAB EXPO 2019

4\ MathWorks

SoC Collaboration with Model-Based Design

RESEARCH REQUIREMENTS
WHAT am | (DESIGN) Am | making
King? _ S the right
making: System Architecture § thing?
Algorithms S
Ro : :
HOW am | . . > Is it going to
o Implementation Architectures S
making it? > Export € work?
~ = “Models =
Implementation Knowledge t ‘Generate Code =
o
>
Embedded Digital Analog H
ave | made
MAKE IT! Software Hardware Hardware S
it right?
System Integration

MATLAB EXPO 2019

| &\ MathWorks

Agenda

- Why Model-Based Design for FPGA, ASIC, or SoC?
)) - How to get started

— General approach — collaborate to refine with implementation detail
— Re-use work to help RTL verification

— Hardware architecture

— Fixed-point quantization

— HDL code generation

— Chip-level architecture

= Customer results

MATLAB EXPO 2019

4\ MathWorks

General Approach: Use the Strengths of MATLAB and Simulink

4

()
MATLAB PESIGN Simulink
System Architecture
v Large data sets Algorithms v Parallel architectures
v EXplore mathematics Streaming v Timing
. Algorithms :
v v
Contro.l Iogl.c | e Dz.ata type propagatl.on
v Data visualization Architectures v Mixed-signal modeling
Fixed-Point Hardware
Architectures
Implementation Architectures
_ J
Bit Accurate Cycle Accurate

MATLAB EXPO 2019

4\ MathWorks

Partition Hardware-Targeted Design, System Context, Testbench

Algorithm Hardware Software

Stimulus Algorithm Algorithm AUEIDRIE

Create input stimulus MATLAB golden reference

Tx Signal {real)

function [CorrFilter, RxSignal, RxFxPt] = pulse_detector_sti % Create matched filter coefficients

CorrFilter = conj(flip(pulse))/Pulselen;

% Create pulse to detect
rng("default’);

PulselLen = 64;

theta = rand(Pulselen,1);
pulse = exp(li*2*pi*theta);

] HEl 120 T AMK Zhil MK d50 dqUs 43 Bl
Rx Signal (real)

Correlate Rx signal against matched filter
FilterOut = filter(CorrFilter,1,RxSignal);

et 1o e b B oy
- -

[peak, location] = max(abs(FilterOut));

i B et e S e b et ot e g e i

% Insert pulse to Tx signal

rng("'shuffle"};

TxlLen = 5888;

PulseLoc = randi{TxlLen-PulselLen*2);

[} 504 1000 50 A 2500 00 35000 4000 4500 5000
Paak found i 3749 wilh a_ﬁu!luﬁ al 1.815e-01
' ' - v ' ' '

0.2 d

TxSignal = complex(zeros{TxLen,1));
TxSignal(Pulseloc:Pulseloc+Pulselen-1) = pulse;

i o e B o B Al e e it el e

% Create Rx signal by adding noise
MNoise = complex(randn(TxLen,1l),randn{TxLen,1));
RxSignal = TxSignal + Noise;

% Scale Rx signal to +/- one ’

MATLAB EXPO 2019

L]
i} 500 1000 500 D0 25080 3000 3500 4000 4500 5000

"i
I
L
{
3 % Find peak magnitude & location
{

10

&\ MathWorks’

Streaming Algorithms: MATLAB or Simulink...or Both

Hardware friendly implementation of peak finder
Instead of calculating the maximum value of the entire frame, we look for a local
peak within a sliding window of the last 11 samples using the following criteria:

= The middle sample is the largest
= The middle sample is greater than a pre-defined threshold

o T o e b L

WindowLen = 11;
MidIdx = ceil(WindowLen/2);
threshold = @.03;

% Compute magnitude squared to avoid sqrt operation
MagSqout = abs(FilterOut)."2;

% 5liding window operation
for n = 1:length(FilterOut)-WindowlLen

% Compare each value in the window to the middle sample vi
DataBuff = MagSqOut(n:n+WindowlLen-1);

MidSample = DataBuff(MidIdx);

CompareOut = DataBuff - MidSample; % this is a vector

% if all values in the result are negative and the middle sa
% greater than a thresheld, it is a local max
if all{CompareQut <= @) && (MidSample » thresheld)
peak_2 = MidSample;
location_2 = n + (MidIdx-1);

._.
o
NN SO DAL WP RN SN

Peak found at E_E!EEI with a value of 2.007e-01

0.1

0 500 1000 1500 2000 2500 3000 2 3500 4000 0 4500 5000

» Pulse Detector/mag_sq_out

ikl b s s

Pulse Detectorfdetected

Lt
Local Peak

nd i Stream input data using
Pl e PO S "Signal From WDI'SF:IECE' block
s Compute Power threshald pthreshold MidSample F—
% Simulate model FaSignal
sim{ 'pulse detector wvi') - Constant 4
- —- Signal Fram l—p
Warkspace R ol X -+ fen
o . . . +-—p
% Correlation filter output Jf_ mag_sq_out 11
. numiz) ~ — P Delays p DiataBuif detected b—
FilteroutSL = squeeze(logsout.getE p T S L 1—"‘ 5 -l
. - -+
compareData(real (FilterOut),real(F I —a— Tzl

compareData(imag(FilterOut),imag(F

MATLAB Function

Stores and outputs

MATLAB EXPO 2019

previous 11 values

11

4\ MathWorks

Refine Algorithm and Verify Against Golden Reference

\

Verification
“Scoreboard”

)

Reference

Algorithm Algorithm

Stimulus

ML vs SL correlator output (re) , max error = 1.110e-16

Design Under Test Mo w0 1000

ML vs SL correlator output (im), max error = 9.714e-17

1500 2000 2500 3000 3500 4000 4500 S000

) . 0.1
Streaming
Algorithms op
Streaming Hardware o i L b Rl il okl it o o | G
ArChiteCtures 0 500 1000 1500 2000 2500 3000 3500 4000 4500 S000
Fixed-Point Hardware Sar i ML v's SL m,ag-squa'red out'put. m:'ax error'=2.255'e-17 '

Architectures

0.02r

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5S000

Peak location = 1485, magnitude = 2.@44e-21 using global max
Peak location = 1485, mag-squared = 4.178e-02 using loczl max

MATLAB EXPO 2019 SIEVITTORP Peok nog:sauared fron Sinulirk = 4.1760-02, error = 208217
12

LU W T SSUD VY VRS P upi O eSeT T VR Y WY GUOURE VP TR L SR N SSRper Y g

4\ MathWorks

Generate SystemVerilog DPI Components for RTL Verification

Algorithm

Reference

Algorithm Verification

Stimulus “Scoreboard”

AL HDL
Verifier

= Reuse MATLAB/SIimulink models in verification

— Scoreboard, stimulus, or models external to the RTL

= Generate from frame-based or streaming algorithm
Floating-point or fixed-point
Individual components or entire testbench

— Runs natively in SystemVerilog simulator
— Eliminate re-work and miscommunication
— Save testbench development time

— Easy to update when requirements change

MATLAB EXPO 2019

DPI

DP|

DPI pi® Scoreboard
— <
Seq DPI
ltems -
L : Design Under :
Driver Test (DUT) RTL Monitor

SystemVerilog verification environment

13

4\ MathWorks

What if there’s a mismatch?

7

MATLAB / Simulink

Algorithm Reference Verification

Stimulus Aoy “Scoreboard”

. HDL Verifier J
cosimulation

4 N\
HDL Simulator

DUT
RTL

-
\

- Co-simulate with 39-party HDL simulator

H H H £ Detector fdk
— Reuse MATLAB/Simulink test environment g ;ﬁ:mmx:rmt i
— Run HDL design in a supported simulator* e _ _ _ I
£ /Pulse_Detector/data_in_re 3 16hfedh) 16'hidgc [16'hf40d 16'h05kS [16'he 158
— Generate co-simulation infrastructure and ;£ [Pulse_Detector/data_in_im 15h052a] 16h07b3 | 16hoG6d 15'h|:|-;-§5 [16hosse
handshaking + ﬁ‘iﬁﬁf o |

— Analyze both the design and test £ [Pulse_Detector/mid_sample _ | 1 L. [3
[Pulse_Detector/detected

environment
O PR
me . Cursorl | 8680575 |

MATLAB EXPO 2019 * Mentor Graphics® ModelSim® or Questa®

Cadence® Incisive ® or Xcelium™

14

Collaborate to Add Hardware Architecture

Optim

ize architecture

design for hardware goals

———————— | catain datalin

PESXCam

Parallal procsssng -

llEncy v resoLros usaps

Irade off

— ¥ cataln dataDin

+

PSSXCom2

| catain LA ™2

Magnibude_ Sguarsd 1

Compule magnilude-sguared to avoid implementing sgl in hardeare

Magnitude_Squared_2

o
’.—'1'“‘*:

—l—
—

Gereralion of a lhresheld sigral via averaging flter

—— | dalln ehrashckd O

o

j
i
=

{
{

-

{

o

Averaging_Filer

o 1>

Gan 3

e e o o e em s e a B o e B o s A BeE a b A mmdnde e e A e B o

MATLAB EXPO 2019

4\ MathWorks

Specify HDL implementation options

fx16_En15 jz) sfix23_Enis (¢)
———— i data data
FFT
HOL Optimized
Latency = -
ol Ean boolean
——————— ualid walid

HODL Properties: FFT HDL Optimized

General
Implementation
Architecture default

Implementation Parameters

ConstrainedOutputPipeline |0

Block Parameters: FFT HDL Optimized *
FFT HDL Optimized
Compute the fast Fourier transform (FFT) of a complex or real input.

The FFT implementation is optimized for HDL code generation.

Main Data Types Control Ports

Parameters

FFT length: [128 lH
Architecture: Streaming Radix 242 v
Complex Multiplication: |U5e 3 multipliers and 5 adders - |

[] output in bit-reversed order
[1 tnput in bit-reversed order
[pivide butterfly outputs by two

Help Apply

9 . oK

|| Cancel ||

InputPipeline |1

OutputPipeline E

oK | cancel ||

|| ARy |

15

Attt e ot e, e At 4, btk i, ST o st A A o ottt 1 Bt

Fixed-Point Streaming Algorithms: Manual Approach

sfix16_En14 tc‘.‘ num(z) sfixd0 En3T (c)

Compute Power

Reduce multiplier input
word size to 18-bit

/

» convert

1 filter_out

R e e s amm e e e e e Bt b o M n e ek o e B a M ke

MATLAB EXPO 2019

=fix18 En15 [l:::l|

Use full-precision for
DSP block mapping

/\

sfix18 Eni1Ss
>

sfix36_En30

=fix18 En15
>

=fix36_En30

sfix37 _En30

Reduce mag-squared output

word size before next stage

/

convert

sfix18 En11

4\ MathWorks

mag_sq out

|
f

|

]

f
4
1
1

B N e R s T e T S R} .-h—-_--_-l-_-,.__.-_-’

16

Fixed-Point Streaming Algorithms: Automated Approach

Simulate with Fixed-Point

Choose to apply

representative data to / Designer proposes / proposed types

collect required ranges data types
T

or set your own

/

Simulate and
compare
results

rs = b
|pu|se_dete1:lnl_'£fF’u... - | .
Derived Ranges ™ Collect @ MATLAE Functions Propose Apply Simulate with Compare
(i Fixed-Point Advisor Ranges v Data Types Data Types = Embedded Types ¥ Results
PREPARE SYSTEM ‘ COLLECT RANGES ‘ CONVERT DATA TYPES ‘ VERIFY ‘
MODEL HEERARCHY Results
5 #g Simulink Root Name « Run CompiledDT SpecifiedDT ProposedDT
H Data Objects g Compute Power/Add : Accumulator RHanges(... double Inherit: Inh... nia
lse_detector_v2
= e Compute Power/Add : Output RHanges(... double Inherit: Inh... fixdt(0,16,19)
Pulse Detector
1P Signal From W{:rksp% Compute Power/Product Ranges(... double Inherit: Inh... fixdt(0,16,19)
Ll 5ign5|| From W{:rkspﬂ [ATECNCRPV VY § PO |y R NPT, [Py f P S [S o O Foedbifi A2 34

{F Unit Delay Enabled !

Visualization of Simulation Data

Histograms of all results in the model
RUN BROWSER

Ranges(Double) [T

Accept SimMin

J R

0
0

0

(]

SimMax ©)
0.071427:
0.071427:

0.0713574

-
M N4AC7F205

Histagram Bins
i1}

Overflows
Fepresentable
In-Range
Underflows

4\ MathWorks

17

Generating Native Floating Point Hardware

HDL Coder Native Floating Point

Extensive math and trigonometric operator support

Optimal implementations without sacrificing

Mix floating- and fixed-point operations

Generate target-independent HDL

None

Library S

Native Floating Point
Altera Megafunctions (ALTE
: functions (A
Latency ¢ Altera Mega
| Xilinx LogiCORE

RA FP FUNCTIONS)
LTFP)

O Handle Denormals

Algorithm Choice: .
Mantissa Multiply Strategy: AU =

MATLAB EXPO 2019

cmbeddedawardz2017

Reduce multiplier input
word size to 18-bit
sfix16_En14 (c sfixdd_En37 (c sfix18_En15 (c sfin18_Eni1
z -Enté (c) p| NuMiZ) [ENTE)) convert EN1500)] i ot = J
1 lﬁlter_nut mag_sq_out
°
Compute Power
e numerical accuracy
Reduce multiplier input
word size to 18-bit .
N
singl ingl fix18_En15 fix18_Eni1
geic),] num(z) single () convert Sfixi8 Ents () data in . data out e °
1 filter_out mag_sq_out
J "
Compute Power -
Additional settings
General Ports Codingstyle Coding standards Diagnostics Floating Point Target Nk e) Py i
AL nfp out_1 im 95 ¢ std_logic_vector (31 DOWNT
Floating Point IP Library: AL nfp out_1_im 96 : std_logic_vector (31 DOWNT
VAL nfp out_1_im 97 ¢ std_logic_vector (31 DOWNT
. i - 1 Point JAZ nfp opt 1 4m 08 s astd Jogic vectox (31 DOWNT
Library: Native Hoatlng VAL filter out_re : std logic vectoxr (31 DOWN

filcer out_im

: std logic

vectoxr (31 DOWM

& oevcon |

e oLd I0QICT

: std logic_vector (17
: std logic vector(l

| |Fixedpoint __|Floating point

)
[]
)
1

=D i

oo Joojooo o«
o B Y - O O O O O ¢«
NN BERYS TRy

LUTs 10k 25k
DSP slices 50 100
Development time ~1 week ~1 day

~2X more resources
~5x less development effort

4\ MathWorks

18

Automatically Generate Production RTL

7

Implementation
Knowledge »

DESIGN

Algorithms
Streaming
Algorithms

Streaming Hardware
Architectures

Fixed-Point Hardware
Architectures

Implementation Architectures

MATLAB EXPO 2019

~\

HDL

Coder

’_I__

N\

Synthesizable RTL
AXI Interfaces
Synthesis scripts

Choose from over 250 supported blocks

— Including MATLAB functions and Stateflow charts
Quickly explore implementation options

— Micro-architectures

— Pipelining

— Resource sharing

— Fixed-point or native floating point
Generate readable, traceable Verilog/VHDL

— Optionally generate AXI interfaces with IP core
Quickly adapt to changes and re-generate

Production-proven across a variety of
applications and FPGA, ASIC, and SoC targets

4\ MathWorks

19

Agenda

- Why Model-Based Design for FPGA, ASIC, or SoC?

- How to get started
— General approach — collaborate to refine with implementation detail
— Re-use work to help RTL verification
— Hardware architecture
— Fixed-point quantization
— HDL code generation
— Chip-level architecture

)) . Customer results

MATLAB EXPO 2019

&\ MathWorks

20

4\ MathWorks

Results at Allegro Microsystems

The Enlightenment: Model Based Design

! S

[Research] [Requirements }»

1 1 U Architecture and Algorithm
Design Evolve into Executable
Algorithm and Architecture Design
9 g Specifications

[Continuous][Discrete]
Time Time

(Implementation
[CustomAnang] [Verilog and J
-

U Front load testing and
verification

O Development is “parallelized”

~

U Continuous Equivalency
Testing Is utilized
Transistor Level Software

uoneouuaA ‘Bunss] ‘buidAiojoid

> O ... And of course auto-
; generated production code
i Physical Implementation and Integration | g

J

MATLAB EXPO 2019
Link to MATLAB Expo video 21

https://www.mathworks.com/videos/a-mixed-signal-model-based-design-flow-for-automotive-sensors-1481312986577.html

4\ MathWorks

Getting Started Collaborating with Model-Based Design

RESEARCH

—%

REQUIREMENTS

L

DESIGN

System Architecture

Algorithms

Implementation Architectures

\

)

Export
b = “Models
Implementation Knowledge t ‘Generate Code
Embedded Digital Analog
Software Hardware Hardware

System Integration

MATLAB EXPO 2019

LUOITRDIIISA 7 UOIIEpI[eA

DDDD\

. . . .)
Refine algorithm toward implementation

Verify refinements versus previous versions
Generate verification models

Add hardware implementation detail and
generate optimized RTL

Simulate System-on-Chip architecture

Eliminate communication gaps
Key decisions made via cross-skill collaboration

Ildentify and address system-level issues before
Implementing subsystems

Adapt to changing requirements with agility

22

&\ MathWorks

L earn More

= Next steps to get started:
— Verification: Improve RTL Verification by Connecting to MATLAB webinar
— Fixed-point quantization: Fixed-Point Made Easy webinar
— Incremental refinement, HDL code generation: HDL self-quided tutorial
— https://www.mathworks.com/solutions/fpga-asic-soc-development/asic.html

= Technology showcase here at MATLAB EXPO

= MathWorks Advisory Board (MAB)

= Pilots and Consulting services to help you get on-board

= Contact your local sales representative for hands-on workshops

MATLAB EXPO 2019
23

https://www.mathworks.com/videos/improve-rtl-verification-by-connecting-to-matlab-1551796133310.html?s_tid=srchtitle
https://www.mathworks.com/videos/fpga-for-dsp-applications-fixed-point-made-easy-1495129243550.html
https://www.mathworks.com/matlabcentral/fileexchange/69651-hdl-coder-self-guided-tutorial
https://www.mathworks.com/solutions/fpga-asic-soc-development/asic.html

