
1© 2015 The MathWorks, Inc.

Adopting Model-Based Design for

FPGA, ASIC, and SoC

Development

Robert Anderson

Principal Application Engineer - MathWorks

2

Agenda

▪ Why Model-Based Design for FPGA, ASIC, or SoC?

▪ How to get started

– General approach – collaborate to refine with implementation detail

– Re-use work to help RTL verification

– Hardware architecture

– Fixed-point quantization

– HDL code generation

– Chip-level architecture

▪ Customer results

3

FPGA, ASIC, and SoC Development Projects

67% of ASIC/FPGA projects are behind schedule

75% of ASIC projects require a silicon re-spin

Over 50% of project time is spent on verification

Statistics from 2018 Mentor Graphics / Wilson

Research survey, averaged over FPGA/ASIC

84% of FPGA projects have non-trivial

bugs escape into production

4

Many Different Skill Sets Need to Collaborate

Algorithms

System Architecture

System Integration

REQUIREMENTSRESEARCHRESEARCH

SPECIFICATIONS

Verification

Analog

Hardware

Embedded

Software

Digital

Hardware

SPECIFICATIONS

SPECIFICATIONS

“Rapid innovation under a rapid

timeline – that’s when this flow falls

apart.”

Jamie Haas

Allegro Microsystems

• Poor communication across teams

• Key decisions made in silos

• System-level issues found in late stages

• Hard to adapt to changing requirements

5

Abstraction vs Design Space Exploration

High Level

Modeling

Model Elaboration/

Fixed-Point Conversion

RTL Design and HDL Verification

Place and Route and Floor-planning

Abstraction Level

Effort required to move across design space

6

Cost of Finding a Bug vs Location in Design Cycle

High Level Modeling/Verification

Model Elaboration/Fixed-Point Conversion

RTL Design and HDL Verification

Place and Route/Floor-planning

Location in

Design Cycle

Post – Production/Product Launch

Integration and Validation Test

Requirements

7

DESIGN

SoC Collaboration with Model-Based Design

Algorithms

System Architecture

System Integration

REQUIREMENTSRESEARCHRESEARCH

Analog

Hardware

Embedded

Software
Digital

Hardware

Implementation Architectures

Implementation Knowledge Generate Code

Export

Models
V

e
rific

a
tio

n
V

a
lid

a
tio

n
 &

HOW am I

making it?

Is it going to

work?

WHAT am I

making?

MAKE IT!
Have I made

it right?

Am I making

the right

thing?

8

Agenda

▪ Why Model-Based Design for FPGA, ASIC, or SoC?

▪ How to get started

– General approach – collaborate to refine with implementation detail

– Re-use work to help RTL verification

– Hardware architecture

– Fixed-point quantization

– HDL code generation

– Chip-level architecture

▪ Customer results

9

DESIGN

Algorithms

System Architecture

Implementation Architectures

MATLAB Simulink

✓ Large data sets

✓ Explore mathematics

✓ Control logic

✓ Data visualization

✓ Parallel architectures

✓ Timing

✓ Data type propagation

✓ Mixed-signal modeling

General Approach: Use the Strengths of MATLAB and Simulink

DESIGN

Algorithms

System Architecture

Implementation Architectures

Streaming

Algorithms

Streaming Hardware

Architectures

Fixed-Point Hardware

Architectures

Bit Accurate Cycle Accurate

10

Partition Hardware-Targeted Design, System Context, Testbench

Hardware

Algorithm

Algorithm

Stimulus
Analysis

Software

Algorithm

11

Streaming Algorithms: MATLAB or Simulink…or Both

12

Refine Algorithm and Verify Against Golden Reference

Algorithm

Stimulus

Verification

“Scoreboard”

Design Under Test

Reference

Algorithm

Streaming

Algorithms

Streaming Hardware

Architectures

Fixed-Point Hardware

Architectures

Self-checking

13

Verification

“Scoreboard”

Generate SystemVerilog DPI Components for RTL Verification

Algorithm

Stimulus

SystemVerilog verification environment

Scoreboard

Design Under

Test (DUT) RTL
Driver Monitor

Seq.

Items

Scoreboard

▪ Reuse MATLAB/Simulink models in verification

– Scoreboard, stimulus, or models external to the RTL

▪ Generate from frame-based or streaming algorithm

▪ Floating-point or fixed-point

▪ Individual components or entire testbench

– Runs natively in SystemVerilog simulator

– Eliminate re-work and miscommunication

– Save testbench development time

– Easy to update when requirements change

HDL

Verifier

DPI C

DPI C

DPI C

HDL

Verifier

DPI C

Reference

Algorithm

14

MATLAB / Simulink

What if there’s a mismatch?

HDL Simulator

DUT

RTL

HDL Verifier

cosimulation

▪ Co-simulate with 3rd-party HDL simulator

– Reuse MATLAB/Simulink test environment

– Run HDL design in a supported simulator*

– Generate co-simulation infrastructure and

handshaking

– Analyze both the design and test

environment

* Mentor Graphics® ModelSim® or Questa ®

Cadence ® Incisive ® or XceliumTM

Algorithm

Stimulus

Verification

“Scoreboard”

Reference

Algorithm

15

Collaborate to Add Hardware Architecture

Optimize architecture

design for hardware goals

Specify HDL implementation options

16

Fixed-Point Streaming Algorithms: Manual Approach

17

Fixed-Point Streaming Algorithms: Automated Approach

Simulate with

representative data to

collect required ranges

Fixed-Point

Designer proposes

data types

Choose to apply

proposed types

or set your own

Simulate and

compare

results

18

Generating Native Floating Point Hardware

HDL Coder Native Floating Point

• Extensive math and trigonometric operator support

• Optimal implementations without sacrificing

numerical accuracy

• Mix floating- and fixed-point operations

• Generate target-independent HDL

19

Automatically Generate Production RTL

DESIGN

Algorithms

Implementation Architectures

Streaming

Algorithms

Streaming Hardware

Architectures

Fixed-Point Hardware

Architectures

Implementation

Knowledge

HDL

Coder

Synthesizable RTL

AXI Interfaces

Synthesis scripts

▪ Choose from over 250 supported blocks

– Including MATLAB functions and Stateflow charts

▪ Quickly explore implementation options

– Micro-architectures

– Pipelining

– Resource sharing

– Fixed-point or native floating point

▪ Generate readable, traceable Verilog/VHDL

– Optionally generate AXI interfaces with IP core

▪ Quickly adapt to changes and re-generate

▪ Production-proven across a variety of

applications and FPGA, ASIC, and SoC targets

20

Agenda

▪ Why Model-Based Design for FPGA, ASIC, or SoC?

▪ How to get started

– General approach – collaborate to refine with implementation detail

– Re-use work to help RTL verification

– Hardware architecture

– Fixed-point quantization

– HDL code generation

– Chip-level architecture

▪ Customer results

21

Results at Allegro Microsystems

Link to MATLAB Expo video

https://www.mathworks.com/videos/a-mixed-signal-model-based-design-flow-for-automotive-sensors-1481312986577.html

22

DESIGN

Getting Started Collaborating with Model-Based Design

Algorithms

System Architecture

System Integration

REQUIREMENTSRESEARCHRESEARCH

Analog

Hardware

Embedded

Software
Digital

Hardware

Implementation Architectures

Implementation Knowledge Generate Code

Export

Models

V
e
rific

a
tio

n
V

a
lid

a
tio

n
 &

❑ Refine algorithm toward implementation

❑ Verify refinements versus previous versions

❑ Generate verification models

❑ Add hardware implementation detail and

generate optimized RTL

❑ Simulate System-on-Chip architecture

➢ Eliminate communication gaps

➢ Key decisions made via cross-skill collaboration

➢ Identify and address system-level issues before

implementing subsystems

➢ Adapt to changing requirements with agility

23

Learn More

▪ Next steps to get started:

– Verification: Improve RTL Verification by Connecting to MATLAB webinar

– Fixed-point quantization: Fixed-Point Made Easy webinar

– Incremental refinement, HDL code generation: HDL self-guided tutorial

– https://www.mathworks.com/solutions/fpga-asic-soc-development/asic.html

▪ Technology showcase here at MATLAB EXPO

▪ MathWorks Advisory Board (MAB)

▪ Pilots and Consulting services to help you get on-board

▪ Contact your local sales representative for hands-on workshops

https://www.mathworks.com/videos/improve-rtl-verification-by-connecting-to-matlab-1551796133310.html?s_tid=srchtitle
https://www.mathworks.com/videos/fpga-for-dsp-applications-fixed-point-made-easy-1495129243550.html
https://www.mathworks.com/matlabcentral/fileexchange/69651-hdl-coder-self-guided-tutorial
https://www.mathworks.com/solutions/fpga-asic-soc-development/asic.html

