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Limits of Modern EDA

• Design respins have not been eliminated
• Many of the observed failures during qualification testing are 

the direct result of an insufficient modeling capability
o Sources of such failures include mistuned analog circuits, signal timing 

errors, reliability problems, and crosstalk [1] 

o Variability cannot be modeled in a manner that is both accurate and 
computationally efficient

• Simulation-based design optimization has had only limited 
success
o Simulation “in-the-design-loop” often too slow and leads to impractical 

designs

• Proposal: use machine learning algorithms to overcome those 
hurdles!

[1] Harry Foster, “2012 Wilson Research Group Functional Verification Study,”
http://www.mentor.com/products/fv/multimedia/the-2012-wilson-research-group-functional-verification-studyview

http://www.mentor.com/products/fv/multimedia/the-2012-wilson-research-group-functional-verification-studyview
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CAEML Research Thrusts

• Theory and Machine Learning Efficiency 

• Design and System Optimization 

• Modeling and Simulation 

• Verification 

• Reliability and Security 



• CAEML researchers utilize open source and commercial 
software to get the job done

• In particular, several Matlab toolboxes
‒ System identification

‒ Global optimization 

‒ Machine learning

‒ Neural networks

Solvers and Optimizers



CAEML Activities

• Design Optimization
o Example: Clock skew minimization for 3D-IC

• Generative Modeling
o Example: Stochastic models of PCB interconnects

• Circuit macro-modeling
o Example: Recurrent neural network

o Example: System identification

• Other …
o Deep networks (for DRC)

o Causal inference (for hardware failure models)

o Security threat detection



Introduction to Bayesian Optimization

• Model f as a random process
o Usually a GP

• Obtain next training sample f(Xi), 
where Xi = 𝒂𝒓𝒈𝒎𝒂𝒙

𝐗

{P(f(Xi) > f(X+))}

o Maximizes PI, probability of improvement

• Other acquisition functions
o EI, expected improvement

o UCB / LCB, and more …

o Designed to balance exploration (high 
variance) and exploitation (high mean)

𝑃 𝑓 𝑫 =
𝑃(𝑫|𝑓)𝑃 𝑓

𝑃(𝑫)
∝ 𝑃 𝑫 𝑓 𝑃(𝑓)

Prior ModelLikelihoodPosterior

Figure: E. Brochu. arXiv:1012.2599



Thermal Design Optimization for 3D-IC
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 Clock Skew is affected by Temperature (magnitude and gradient)

 Temperature is controlled by FIVE input (or control) parameters

 Control parameters have certain constraints

 Objective is therefore to TUNE these parameters to minimize Skew

 More generally, seek to find Xopt = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐗

((f(X)). Accurate modeling of f(X) needed only near min

 Use ML-based Bayesian Optimization

S. J. Park, B. Bae, J. Kim and M. Swaminathan,     
“Application of Machine-Learning for Optimiza-
tion of 3-D Integrated Circuits and Systems,”
IEEE Trans. VLSI, June 2017.



Full Design Space Exploration too Costly

• 3D (finite volume) simulations + SPICE-type circuit simulation

• Need to limit the number of designs that are simulated



Two-stage Bayesian Optimization

First, Fast 
Exploration; Second, 
Pure Exploitation 
 Coarse and fine tuning

 Hierarchical 
Partitioning Scheme
 Reduces number of 

simulations required

 Active learning of 
acquisition function



Not the Fastest Algorithm, but …

2D 
BRANIN

3D
HARTMANN

4D 
SHEKEL

6D 
HARTMANN

TSBO 6.15s 4.35s 6.79s 6.51s

IMGPO 1.28s 1.35s 1.83s 1.91s

GP-UCB 10.4s 10.5s 11.4s 12.2s

 With the cost of few seconds of 

algorithm run time, TSBO reduces 

number of simulations required for 

accurate optimization

Fewer iterations to convergence Note: IMGPO is a known algorithm that is publicly downloadable

• For EDA applications in which simulations are expensive, minimizing the 
number of physical simulations is the goal



Results: Clock Skew Minimization

Non Linear 
Solver

Previous 
Work[1]

This 
Work

25.2 (+%9.4) 23.8 (+%4.7) 23.5

Skew [ps] 96.6 (+%12.3) 88 .0 (+%2.3) 86.0

CPU Time (Normalized) * 3.96 3.76 1.00

~4X Faster

[1] S. J. Park et al., TVLSI ‘17.
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o Causal inference (for hardware failure models)
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Interconnect Modeling

• Scattering parameters characterize the 
electrical behavior of circuit interconnects
o Complex, matrix-valued function of frequency
o Stored as frequency-tabulated matrices at discrete 

frequency points within band of interest
o Can be used as generic multiport network block in 

circuit simulation
o Dense frequency sampling and multiport 

interconnects produce high-dimensional data 

• S-parameters of manufactured 
interconnects exhibit variability
o Manufacturing process introduces variability in 

material and geometric properties
o Deviation of those properties from design value 

alters electrical behavior
o Probabilistic model is necessary to capture the 

variability Overlaid scattering parameters

3 different realizations:
𝑠 = 40.0𝜇𝑚,𝑤 = 50.0𝜇𝑚
𝑠 = 39.9𝜇𝑚,𝑤 = 43.1𝜇𝑚
𝑠 = 34.9𝜇𝑚,𝑤 = 51.4𝜇𝑚



Generative Models

• Goal: Model probability distribution of S-parameters 
in a form that lends itself to sampling
o Generate S-parameters for stochastic circuit simulations

• Current state-of-the-art
o S. Ridder et al., “A generative modeling framework for statistical 

link analysis based on sparse data,” IEEE Trans. CPMT (2017)
 Vector fitting (VF) and principal component analysis (PCA) based 

dimensionality reduction; kernel density estimation (KDE) based non-
parametric statistical model

o S. Ridder et al., “Generation of stochastic interconnect responses 
via Gaussian process latent variable models” IEEE Trans. EMC
(2018)
 VF and latent variable model (LVM) based dimensionality reduction; 

Gaussian process (GP) regression based non-parametric statistical model

• Drawback
o Inefficient for large amount of high-dimensional data

 Need additional dimensionality reduction steps, which may compromise 
model accuracy

Example of parametric statistical 

model: Gaussian fitting

Example of non-parametric 

statistical model: KDE



Variational Autoencoder (VAE)
• Explain variation of observed data with latent 

variables and non-linear mapping
o High-dimensional data often concentrates near low-

dimensional manifold
o Latent space is low-dimensional and easy to model

• Recognition model and generation model
o Probability distributions parameterized by outputs of 

neural network

• Optimize variational bound on combined model
o Identify the most appropriate latent space
o Maximize reconstruction accuracy

• Advantages
o High memory efficiency

 Parametric statistical model offers bounded model 
complexity

 Iterative training algorithm
o Improved accuracy

 No additional dimensionality-reduction step needed



Physical Consistency

• Stability, causality, and passivity
o Fundamental properties that interconnect model must satisfy

o Violations potentially cause erroneous circuit simulation results

o Difficult to build these constraints into the generative model

• Our solution: Vector fitting (VF) of generated scattering 
parameters (post-processing step)
o Producing a rational function fit of system response (macro-model) based 

on frequency-tabulated data

o Straightforward enforcement of stability and causality as well as perturbative 
passivity enforcement result in a physically consistent macro-model

o Matlab has VF functionality and many circuit simulators already have VF 
functionality built-in

X. Ma, 2018 SPI
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Transient Modeling Using RNN

Outputs y1xy:

yt = bout+xtWout
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Hidden states x1xn:

xt = g(bin+utWin+xt-1Wrec)

g(.) = activation, e.g., tanh

g

g

Inputs u1xi

Parameter set:

bin, Win, Wrec, bout,Wout, x0

• RNN approximate any system represented by a state space model

ቊ
ሶ𝒙 = 𝑓 𝒙, 𝒖
𝒚 = 𝑔(𝒙, 𝒖)

;  u is input, y is output, x is state

• Many circuits and devices can be represented by state space models



Modified RNN for Zero-in Zero-out

• “Vanilla” RNN equations

• Electrical circuits at thermal equilibrium
o Response to zero input and zero initial state is zero

 Relevant when simulating response of an unpowered circuit to system-level ESD

• Implementation of zero-in zero-out (ZIZO) RNN

o If 𝒖 = 𝟎 (zero input) and 𝒙0 = 𝟎 (zero initial state), then 𝒚 = 𝟎 (zero output)

20

Z. Chen et al., 2017 EPEPS



Discussion: ZIZO Equations

• Alternatively, ZIZO can be obtained using the vanilla RNN equations with 
the bias terms set to zero

• Issue: This RNN provides a good fit only to circuits whose I-V 
characteristic is an odd function

21

Modified vanilla RNN New ZIZO RNN



– Create current sources

– Due to KCL, simulator solves for

RNN for Circuit Simulation

• Transform discrete time RNN model to continuous time

• Hidden states x as node voltages

• Implement differential equation in Verilog-A
o Differential Equation:

22

Z. Chen et al., 2017 EPEPS



Model Stability

• The behavioral model should preserve the stability of the 
circuit being represented

• For arbitrary steady-state input 𝒖𝒔 and any initial condition, 
the solution of the differential equation must satisfy

lim
𝑡→∞

𝒙 𝑡 = 𝒙𝒔,

where 𝒙𝒔 is the solution of the static equation

𝒙𝒔 = 𝝈 𝑊𝑟𝒙𝒔 +𝑊𝑢𝒖𝒔 + 𝛀𝟎 − 𝝈 𝛀𝟎

• RNN weights are optimized using stochastic gradient descent 
→ introduce a term into the loss function to penalize unstable 
models
o Penalize positive eigenvalues of 



Verilog-A Model Evaluation

• Apply previously unencountered stimuli to Verilog-A RNN model of 
an Active Rail Clamp circuit

• Average error less than 2% of peak-to-peak amplitude in all cases 

24

Randomly generated piecewise-
linear waveform

IEC 61000-4-2 system-level 
ESD waveform



Computational Efficiency

• Test case: Encrypted netlist for unknown circuit
o Over 1000 transistors 
o 7 voltage inputs, 2 voltage outputs
o Stimuli: 2-level digital input with VH=5V, VL=0V, Tbit=1ms, tr=tf=1ns

• Training data generation
o Randomly assign 1 or 0 to each input for each bit (1 ms)
o Transient circuit simulation with full netlist

• Result
oBasic RNN model
oWaveform shown at right
oModel Error < 1%
oSimulation Time
 Netlist 254.5 s
 RNN 5.7 s



System Identification

System identification is used to build models for dynamic systems
based on the input and output pairs. It solves the black-box problem.

Two general approaches: linear system identification modeling and
nonlinear system identification modeling.

G(z)U(z) Y(z)

E(z)

+

H(z)

white noise
filter

disturbance

outputinput process

E(z)



Example: Receiver Modeling

• Problem:
o How to predict eye opening at output 

of receiver when all you can measure 
the closed eye at the input

o How to determine best settings for 
DFE, CTLE

27

• Solution:  Black box modeling 
using System Identification

o Matlab toolbox

.

.

.Channel

CTLE

+

DFE

CDR

clk



AutoRegressive eXternal input (ARX)

• In ARX model, the current output is related to previous delayed 
inputs and the previous outputs. It doesn’t consider white-noise 
disturbance. The ARX linear model predictor is of the form:

Usage in Matlab:

>> sys = arx(data,[na nb nc nk])
o data: training data

o na: is the order of the polynomial A(q)

o nb: is the order of the polynomial B(q) + 1

o nk: is the input-output delay expressed as fixed leading zeros of the B polynomial

𝐴 𝑞 𝑦 𝑡 = 𝐵 𝑞 𝑢 𝑡 − 𝑛𝑘

Where     𝐴 𝑞 = 1 + 𝑎1𝑞
−1 +⋯+ 𝑎𝑛𝑎𝑞

−𝑛𝑎

𝐵 𝑞 = 𝑏1 + 𝑏2𝑞
−1 +⋯+ 𝑏𝑛𝑏𝑞

−𝑛𝑏+1



ARX Model

m = arx(ztrain,[2 2 0]);

compare(ztest, m);
Description:
ztrain: training data
m: arx model
Order of A (how many
previous outputs): 2
Order of B (how many
previous inputs): 2
Delay (delay between
input and output): 0
ztest: testing data
compare(): test model
accuracy in time domain.
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AutoRegressive Moving Average 
eXternal input(ARMAX)

• In ARMAX model, the current output is related to previous delayed 

inputs, the previous outputs, current and previous white-noise 

disturbance values. The ARMAX model is more general than the ARX 

model. The ARMAX linear model structure is shown below:

• Usage in Matlab:

>> sys = armax(data,[na nb nc nk])

o data is the training data; na is the order of the polynomial A(q), nb is the 
order of the polynomial B(q) + 1; nc: is the order of the polynomial C(q); 
nk: is the input-output delay expressed as fixed leading zeros of 
the B polynomial

𝐴 𝑞 𝑦 𝑡 = 𝐵 𝑞 𝑢 𝑡 − 𝑛𝑘 + 𝐶 𝑞 𝑒(𝑡)

Where     𝐴 𝑞 = 1 + 𝑎1𝑞
−1 +⋯+ 𝑎𝑛𝑎𝑞

−𝑛𝑎

𝐵 𝑞 = 𝑏1 + 𝑏2𝑞
−1 +⋯+ 𝑏𝑛𝑏𝑞

−𝑛𝑏+1

𝐶 𝑞 = 1 + 𝑐1𝑞
−1 +⋯+ 𝑐𝑛𝑐𝑞

−𝑛𝑐



ARMAX Model

>> m = armax(ztrain,[2 3 3 0]);
>> compare(ztest, m);

Description:
ztrain: training data
m: armax model
Order of A (how many
previous outputs): 2
Order of B (how many
previous inputs): 3
Order of C (previous white-
noise disturbance value): 3
Delay (delay between input
and output): 0
ztest: testing data
compare(): test model
accuracy in time domain.
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Solution Space

• Nonlinear network autoregressive 
external moving average input gives 
best accuracy with a large enough 
training set

Neural
Network
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…
…
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…
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Extra Slides



Industry-University Cooperative 
Research Center (I/UCRC) Program

Mission:

• To contribute to the nation’s research infrastructure base by 

developing long-term partnerships among industry, academe and 

government

• To leverage NSF funds with industry funds to support graduate 

students performing industrially-relevant research

Vision:
• To expand the innovation capacity of our nation’s competitive 

workforce through partnerships between industries and universities

40 years of fostering and growing long-term partnerships 

among industry and academe based on shared value
(Adapted from Hoffman, NSF Assessment Coordinator Introduction, April 25, 2017, CAEML IAB Meeting)



CAEML Industry Members for 2018



• Modular Machine Learning for Behavioral Modeling of 
Microelectronic Circuits and Systems

‒ The modularity offered by the behavioral approach will be leveraged to 
develop mathematical tools for assessing the performance and minimal 
data requirements for learning a low-complexity representation of the 
system behavior, one component or subsystem at a time

• Intellectual Property Reuse Through Machine Learning
‒ Recast an analog or full custom digital design from one technology node to 

another, assuming the same circuit topology

• Behavioral Model Development for High-Speed Links
‒ Systematically develop a hierarchy of behavioral models of circuits that 

have the same accuracy as the transistor-level models, but require 25–50X 
less CPU time and memory. 

CAEML Research Projects (2018)



• Models to Enable System-level Electrostatic Discharge Analysis
‒ ML is used to create ESD models of the system’s nonlinear components, as 

needed for SOA analysis and soft failure prediction. The models are targeted 
for circuit or hybrid (EM-circuit) simulators. 

• Optimization of Power Delivery Networks for Maximizing Signal 
Integrity

‒ Develop ML based software to optimize the system output response based 
on a large set of design factors (control parameters). Co-optimization of the 
signal path and power delivery network is necessary.

• Design Rule Checking with Deep Networks
‒ Investigate the feasibility of training a deep convolutional network to perform 

Design Rule Checking (DRC)

Research Projects



• Machine Learning for Trusted Platform Design
‒ Use ML to assess if an IoT system is under attack and develop countermeasures 

• Machine Learning to Predict Successful FPGA Compilation Strategy
‒ Produce FPGA compilation recipes that show high success rate and fast 

compilation time

• Causal Inference for Early Detection of Hardware Failure
‒ Use time-series sensor data to detect wear-out of a hardware component, e.g. 

HDD or SSD in a storage array. Longitudinal causal inference techniques will omit 
redundant covariates or features that might be correlated with the failure but do 
not help in the prediction task

• Applying Machine Learning to Back End IC Design
‒ Utilize surrogate modeling to guide tool setup for a specific design and specific 

design goals

Research Projects


