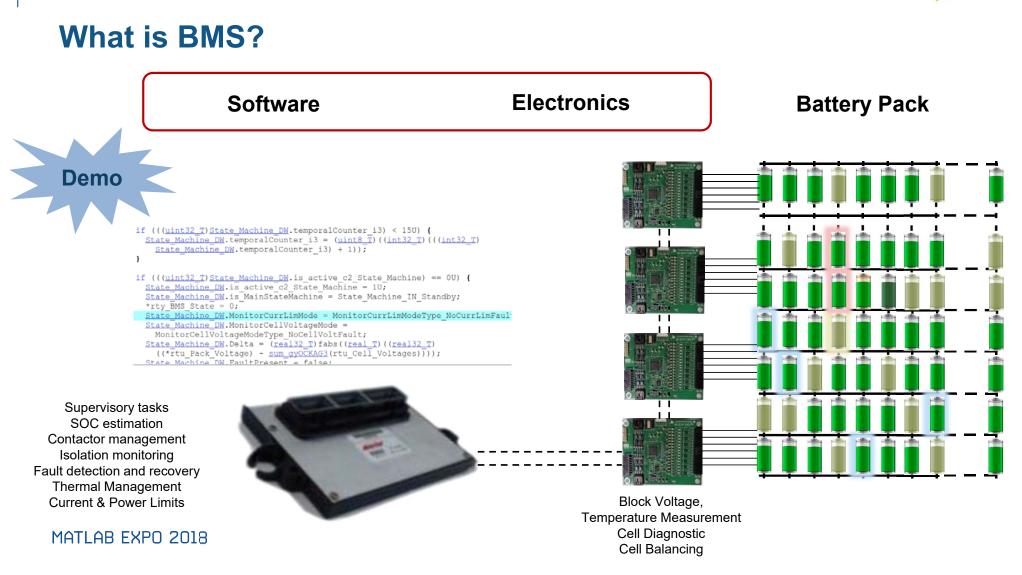
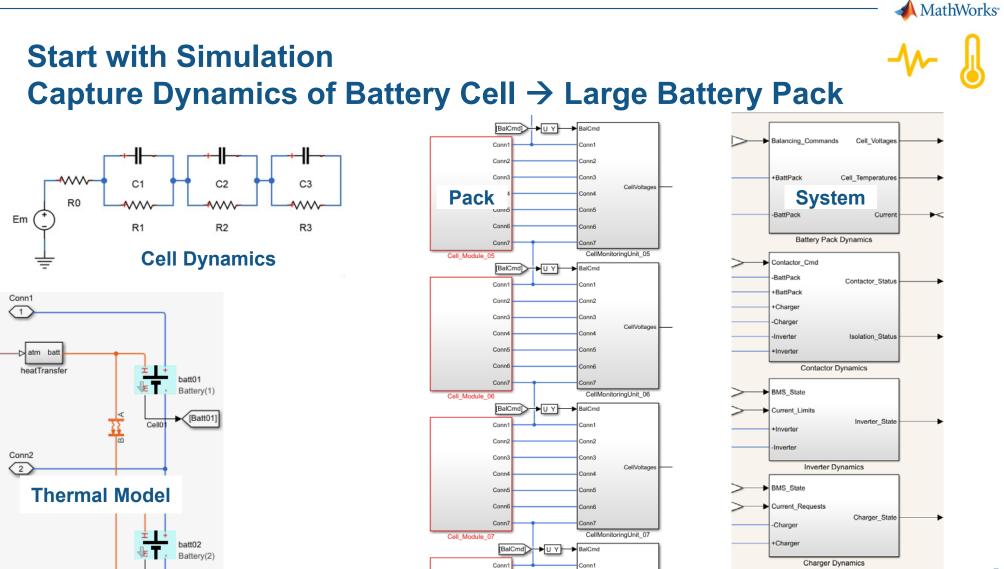

MATLAB EXPO 2018

Developing Battery Management System using Simulink


Chirag Patel MathWorks



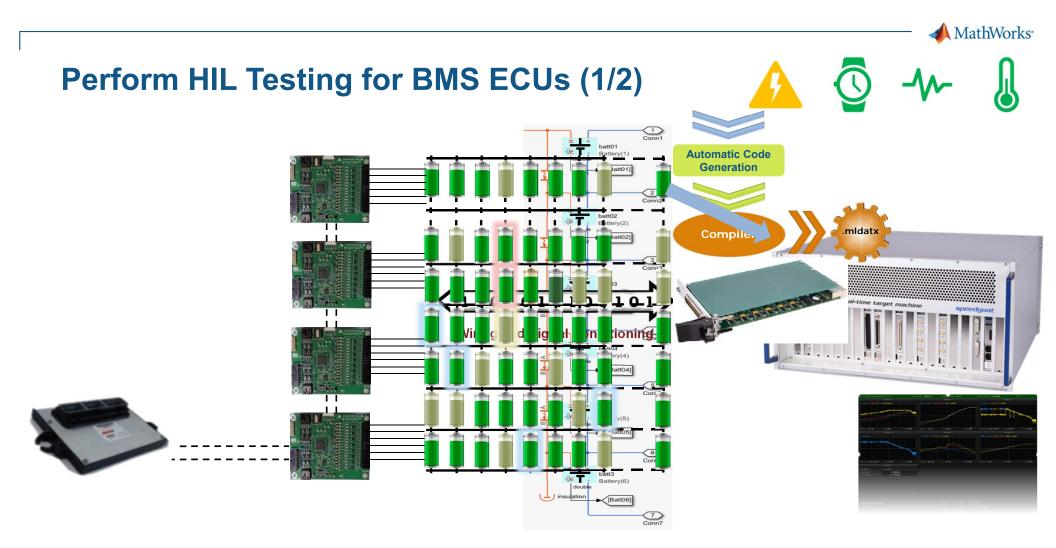
MATLAB EXPO 2018

2

📣 MathWorks[.]

MathWorks

Develop Battery Management Algorithms in Simulink



MathWorks[®]

-∿~-

Generate C/C++ Code From BMS Algorithm Models

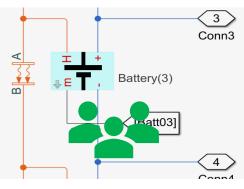
	< 🌳 📽 Find:	🔂 🦑 Match Case											
BMS Algorithms	Contents	387 388 if (((<u>uint32_T)State_Machine_DW</u> .temporalCounter_i3) < 15U) { 389 <u>State_Machine_DW</u> .temporalCounter_i3 = (<u>uint8_T</u>)((<u>int32_T</u>)(((<u>int32_T</u>))											
[Cell_Voltages] Cell_Voltages	<u>Summary</u>	<pre>390 State Machine_DW.temporalCounter_i3) + 1)); 391 }</pre>											
Cell_Temperatures SOHs [SOHs]	Subsystem Report	392 393 if (((<u>uint32_T)State_Machine_DW</u> .is_active_c2_State_Machine) == OU) {											
SOC_SOH_Estimation	Traceability Report	394 <u>State Machine DW</u> .is_active_c2_State Machine = 1U; 395 <u>State Machine DW</u> .is_MainStateMachine = State Machine IN Standby;											
[Current] Current [Cell_Voltages] Cell_Voltages Current_Limits	Static Code Metrics Report	396 *rty_BMS_State = 0; 397 <u>State Machine DW</u> .MonitorCurrLimMode = MonitorCurrLimModeType NoCurrLimFault;											
Cell_Temperatures	Code Replacements Report	398 <u>State Machine DW</u> .MonitorCellVoltageMode = 399 MonitorCellVoltageModeType NoCellVoltFault;											
[SOCs] SOCs Current_Requests [Current_Requests]	Highlight Navigation	400State Machine DW.Delta = (real32 T) fabs((real T) ((real32 T)401((*rtu Pack Voltage) - sum gyOCKAG3(rtu Cell Voltages))));											
[SOHs] SOHs Current_Power_Limits_Calc	Previous Next	402 State Machine DW.FaultPresent = false: State_Machine View All											
[Cell_Voltages] Cell_Voltages Balancing_Enable [Balancing_Enable]	Generated Code	State_Machine State_Machine											
Cell_Temperatures	[-] Model files												
[Contactor_Status] Contactor_Status	State_Machine.c (16)												
[Isolation_Status] Isolation_Status BMS_State [BMS_State] State Machine	State_Machine.h												
	State_Machine_private.h												
[Cell_Voltages] Cell_Voltages	State_Machine_types.h												
Balancing_Enable Balancing_Commands Balancing_Commands]	[+] Shared files (3)												
[Charger_State] Charger_State													
[Inverter_State] Inverter_State Balancing_Logic													
MATLAB EXPO 2018													

MATLAB EXPO 2018

Perform HIL Testing for BMS ECUs (2/2) IO991: Battery Emulation I/O Module

Key Features

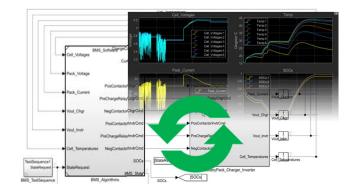
- 6 independent isolated channels
- Architecture allows series and parallel battery stack combinations
- Independent power and sense lines
- Voltage range of 0-7 V with 14-bit resolution
- 300 mA source to load
- 100 mA sink adjustable in 16 steps



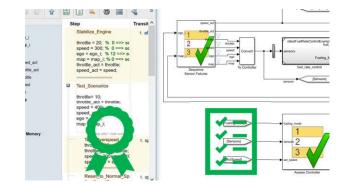
MATLAB EXPO 2018

Summary

Multi-Domain

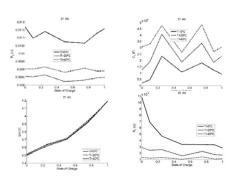

Collaborate Across Domains MATLAB EXPO 2018

Long Iteration Cycles



Safety Critical System

Reduce Iteration Time



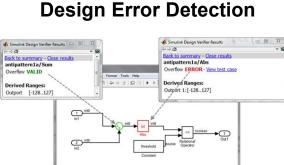
Functional Safety Certification

Taking It Further

Parameter Estimation

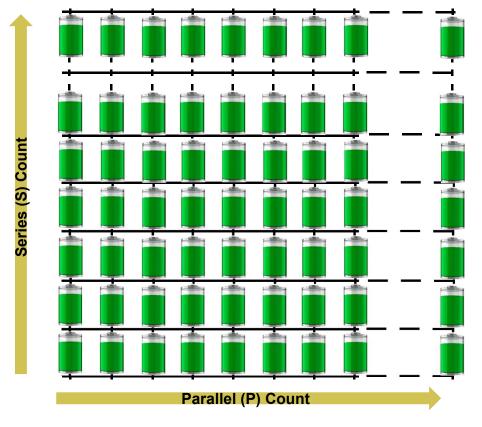
Test Automation

Den Sen Sinter Den An De Parte Ser Visute B Anner Test Reason Response » 🕅 Start Page · Test for I Test for Dynamic Response where a lit con-11 % # C


HDL Code Generation

Model Checks

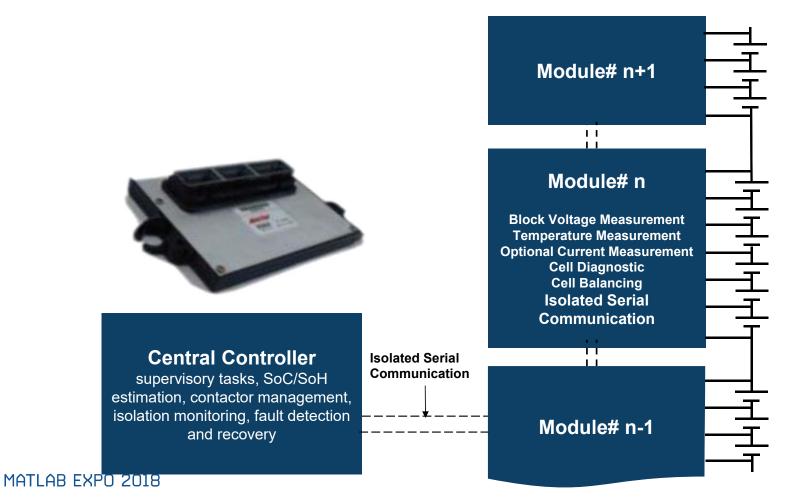
- Modeling Standards for Secure Coding (CERT C, CWE, ISO/IEC TS 17961)
- A Check configuration parameters for secure coding standards
- Check for blocks not recommended for C/C++ production code deployment
- Check for blocks not recommended for secure coding standards
- Check usage of Assignment blocks
- Check for switch case expressions without a default case
- □□ ^Check for bitwise operations on signed integers
- Check for equality and inequality operations on floating-point values
- Check integer word lengths
- Detect Dead Logic
- Detect Integer Overflow
- Detect Division By Zero
- Detect Out Of Bound Array Access
- $\Box \blacksquare$ ^Detect Violation of Specified Intermediate Minimum and Maximum Values


Model Coverage

Summary																				
Model Hierarchy/Complexity		Current Run						Della						Cumulative						
	-16	D1		C1		MCDO			01	61		MCDC			Df	01		MODO		
V stimolema autopilot had herress	31	38%	-	-	41%	-	17%		15		. 6%	-	0%	-	51%	-	41%	-	17%	
2 Linis	н	34%	-	-	38%	-	17%		2%		- 15		0%	_	47%	-	38%	-	17%	•
3 <u>87. Louis</u>	24	34%	-	-	38%	-	17%		9%		- 15		0%	-	47%	-	38%	-	17%	
4	ŧ!	64N	-	-	07%	-	23%	-	21%		17%		0%		93%	-	07%	-	33%	-
5	4	38%	-	-		NA		NA	13%			NA		NA	88%	-		NA ·		NA
e	13	118		-	15	<u> </u>	0%	-	0%	-	- 25	-	0%	-	11%		15		-0%	-
7. SF. Adlys	8	0%	-	-		NA		NA	0%	_		NA		NA	.0%	-		NA		NA
SF. Coupled	3	0%	-	-		NA		NA	0%	_		NA		NA	0%	_		NA		NA
Vente Dutaute	1	10%	_	-	-	-		NA.	0%	_	0%	-		NA	80%	-	-	-		NA
10 Bultautiett.t	t	-	-	-		NA		NA	0%			NA.		NA	100%	_		NA		NA
11. Capture litra	1	0%	-	-		NA		NA	0%	-		NA.		NA	100%	_		NA.		NA
12 Submittern2	÷	100%	_			NA		NA	0%	_		NA.		NA	100%	_		NA		NA
13. Cathers little	1	100%	-	-		NA		NA	0%	_		NA		NA	100%	-		NA		NA
14 Balantana	ï	0%	-	-		NA		144	0%	-		NA		164	0%	_		NA		NA
18. Cashira time	1	0%	-	-		NA		NA	-	-		NA		NA	0%	_		NA		NA
te. Verification		100%	_	_	00%	_		NA	0%	_	. 0%			NA	100%	_	50%			NA

An Example BMS Architecture (1/2)

- Cells connected in parallel to match Ah capacity requirement
 - a **Block** is one row of P number of cells in parallel
- Blocks are connected in series to match DC Bus voltage
- Cells are assembled, soldered and packaged in smaller Modules
 - A Module is typically 6 to 16 Blocks in series
- An Example 54kWh Pack Configuration
 - Cell: Nominal 3.6v with Capacity 3.4Ah
 - 46Cells in Parallel; Block of 156.4Ah Capacity
 - 98Cells in Series; 6-S Module; Total 16 Modules
 - Pack of 4416 cells with ~54kWh Capacity



MATLAB EXPO 2018

12

An Example BMS Architecture (2/2)

