
1© 2018 The MathWorks, Inc.

Autonomous Navigation using Model Based Design

MATLAB EXPO, San Jose

November 6, 2018

Pulkit Kapur

Industry Lead– Robotics and Autonomous Systems

Carlos Santacruz-Rosero

Application Lead– Robotics and Autonomous Systems

2

Autonomous Systems Development using MATLAB and Simulink

Autonomous Ground Robots Manipulator Arms/Humanoids

Mapping the Environment Machine Learning and Controls

3

Components of Autonomous Systems

PlanningLocalization

ControlPerception

4

Key Takeaway of this Talk

Success in developing an autonomous robotics system requires:

1. Multi-domain simulation with newer technologies

2. Trusted tools which make complex workflows easy and

integrate with other tools

3. Model-based design provides the flexibility for changing

development needs

5

Task: Autonomous Delivery Robot

6

Autonomous Delivery Workflow

7

C++ Code

Networking

Data Import and Playback

Code Generation

Localization

Mapping and Planning

Path Following

Code Generation

8

Mapping
Planning & Decision

making

Localization &

Control

Key Components for Enabling Full Autonomy

Navigation Stack – Key Components

Physical System + Environment

Sensing &

Perception

9

Complex workflows made easy with MATLAB

obj1

obj3

obj2

obj4

Training data Preprocessing Feature Extraction Training

Classifier

% Detect regions

BW = createMask(videoFrame);

% Fill image regions

BW = imfill(BW,'holes');

% Get bounding boxes

stats = regionprops('table',BW,'BoundingBox','Area');

% Filter based on area size

targetIndex = stats.Area > 500;

% Get bounding boxes from detected regions

testFeatures(k,:) = extractHOGFeatures(Icr);

10

Deep Learning with MATLAB

New App for

Ground Truth

Labeling

Label pixels

and regions for

semantic

segmentation

Caffe model

importer

LSTM
(time series, text)

DAG Networks

Library of

pretrained

models

Multi-GPUs in

parallel

Optimized GPU

code

Training plots

NEW

PRODUCT:

GPU Coder-

Convert to

NVIDIA CUDA

code

Deploy / ShareTrain / PredictModelsData

“How do I label

my data?”

“How do I access

the latest models?”

“How do I make training

and prediction faster?”

“How do I deploy

my new model?”

11

Mapping
Planning & Decision

making

Localization &

Control

Key Components for Enabling Full Autonomy

Navigation Stack – Key Components

Physical System + Environment

Sensing &

Perception

12

Simultaneous Localization and Mapping (SLAM)

Robotics System Toolbox™

13

Lidar SLAM Components

Estimate robot motion locally

Recognize previously visited

places

Globally

re-align all

scans

Sensor

Specific

Sensor

Agnostic

Drifts over

time

“Loop closure

detection”

Front-End Back-End
SLAM

Estimate

Sensor

Data

14

SLAM Map Builder App

▪ Build 2D map of

environment based on Lidar

and odometry data

▪ Modify loop closures and

incremental scan matches to

improve map quality

▪ Export the resulting

occupancy grid and use for

path planning

15

Integrate your Own Sensors for Custom SLAM Implementation

▪ Use your own custom sensor

processing

▪ Re-use infrastructure for building and

optimizing maps

16

Mapping
Planning & Decision

making

Localization &

Control

Key Components for Enabling Full Autonomy

Navigation Stack – Key Components

Physical System + Environment

Sensing &

Perception

17

Path Planning

▪ Optimization or search problem

▪ Map representation is needed

▪ Data structures like graphs, heaps, and

queues

▪ Post-processing is sometimes required:

smoothing

18

Plan Paths for Nonholonomic Vehicles using RRT*

19

Mapping
Planning & Decision

making

Localization &

Control

Key Components for Enabling Full Autonomy

Navigation Stack – Key Components

Physical System + Environment

Sensing &

Perception

20

Localization System using Model Based Design

ROS as Communication
Framework

21

Control - Path Following

[𝒙𝒂 𝒚𝒂 𝜽𝒂]

[𝒙𝒃 𝒚𝒃 𝜽𝒃]

Path Planner
Map Path

Final Pose

Initial Pose Path Follower
Steering

Acceleration

22

Controls: Path Following

▪ Control Problem (feedback)

▪ Map representation (most of the

time)

▪ Suited for graphical programming

▪ State machine for Supervisory

logic Angular velocity to go from current position to the lookahead

23

Path Controller

Path
Controller

𝑥 𝑡0 𝑦(𝑡0)

𝑥 𝑡1 𝑦(𝑡1)
⋮

𝑥 𝑡𝑁 𝑦(𝑡𝑁)

Vehicle
Model

We need a vehicle model to design and test our algorithm

𝑥 𝑡 𝑦(𝑡)

24

Pure Pursuit in Action

25

Complete System

26

Table of Features for Autonomous Navigation

Algorithm Application Area MATLAB Implementation

SLAM Ground Robots, ADAS, UAVs

robotics.LidarSLAM

robotics.PoseGraph

robotics.PoseGraph3D

Localization All Autonomous Systems robotics.MonteCarloLocalization

Scan Matching ADAS, Ground Robots
matchScans

matchScansGrid

Point Cloud Registration ADAS, Computer Vision

pcregrigid

pcregistericp

pcregisterndt

Estimation Filters All Autonomous Systems
trackingKF,trackingEKF,trackingUKF

robotics.ParticleFilter

Path Planning All Autonomous Systems

robotics.PRM

pathPlannerRRT(parkMap)

27

Third-Party Simulator Integration

▪ Use co-simulation with third-party simulators for rich sensor and

environment simulation

Gazebo Unreal

28

Clearpath Robotics Accelerates Algorithm Development for

Industrial Robots

Challenge
Shorten development times for laser-based

perception, computer vision, fleet management, and

control algorithms used in industrial robots

Solution
Use MATLAB to analyze and visualize ROS data,

prototype algorithms, and apply the latest advances

in robotics research

Results
▪ Data analysis time cut by up to 50%

▪ Customer communication improved

▪ Cutting-edge SDV algorithms quickly

incorporated

“ROS is good for robotics research and development, but not for

data analysis. MATLAB, on the other hand, is not only a data

analysis tool, it’s a data visualization and hardware interface tool

as well, so it’s an excellent complement to ROS in many ways.”

- Ilia Baranov, Clearpath Robotics

Link to user story

An OTTO self-driving vehicle from Clearpath Robotics.

https://www.mathworks.com/company/user_stories/clearpath-robotics-accelerates-algorithm-development-for-industrial-robots.html

29

Voyage develops longitudinal controls

for self-driving taxis

Challenge
Develop a controller for a self-driving car to follow a target velocity

and maintain a safe distance from obstacles

Solution
Use Simulink to design a longitudinal model predictive controller

and tuned parameters based on experimental data imported into

MATLAB using Robotics System Toolbox. Deploy the controller as

a ROS node using Robotics System Toolbox. Generate source

code using Simulink Coder into a Docker Container.

Results

▪ Development speed tripled

▪ Easy integration with open-source software

▪ Simulink algorithms delivered as production software

“We were searching for a prototyping solution that was

fast for development and robust for production. We

decided to go with Simulink for controller development

and code generation, while using MATLAB to automate

development tasks.”

- Alan Mond, Voyage

Voyage’s self driving car in San Jose, California.

30

Key Takeaway of this Talk

Success in developing an autonomous robotics system requires:

1. Multi-domain simulation with newer technologies

2. Trusted tools which make complex workflows easy and

integrate with other tools

3. Model-based design provides the flexibility for changing

development needs

31

% Thank you

mathworks.com/robotics

Come talk to us at the Autonomous

Navigation Booth!

https://www.mathworks.com/solutions/robotics.html

