MATLAB EXPO 2018

Automated Driving Development with MATLAB® and Simulink®

Avinash Nehemiah Product Manager – Deep Learning, Computer Vision and Automated Driving

Examples of how you can use MATLAB and Simulink to develop automated driving algorithms

Examples of how you can use MATLAB and Simulink to develop automated driving algorithms

Why use Lidar for autonomous driving ?

Account for limitations of vision and radar sensors

Cameras perform poorly in bad weather or limited visibility.

Radar not efficient at detecting object classes.

Demo: Segment Obstacles in Drivable Path

Import common Lidar data file formats

Read point cloud from Velodyne log file

```
% Read Velodyne log data
veloReader = velodyneFileReader(...
    'lidarData_ConstructionRoad.pcap',...
    'HDL32E');
```

```
ptCloud = readFrame(veloReader);
```

```
% Plot the results
player = pcplayer(...
xlimits,ylimits,zlimits);
```

```
view(player,...
ptCloud.Location,...
ptCloud.Intensity);
```


Remove ground plane from point cloud

% Find ground points

```
groundPtsIdx = ...
```

segmentGroundFromLidarData(ptCloud);

```
% Plot ground = green, nonground = red
colorLabels( groundPtsIdx(:)) = greenIdx;
colorLabels(~groundPtsIdx(:)) = redIdx;
view(player,ptCloud.Location,colorLabels)
```

```
% Select detections above ground
nonGroundPtCloud = ...
select(ptCloud,~groundPtsIdx);
```


Cluster point cloud detections

```
% Segment point clouds into clusters
distThreshold = 0.5;
colorLabels = segmentLidarData(...
    nonGroundPtCloud, distThreshold);
% Plot segmented clusters
view(player,...
    nonGroundPtCloud.Location,...
    colorLabels)
```


Learn about developing lidar application

with these examples

Read Velodyne log files

Computer Vision System Toolbox[™] MATLAB EXPO 2018

Ground plane segmentation and removal

Computer Vision System Toolbox[™]

Segment organized point cloud

Computer Vision System Toolbox[™]

Examples of how you can use MATLAB and Simulink to develop automated driving algorithms

Demo: Sensor Fusion of Camera and Radar

MathWorks[®]

Learn how to fuse and track detections from different sensors

Automated Driving System ToolboxTM

How to adjust algorithm if sensors change ?

Synthesize scenarios to test sensor fusion algorithms

Automated Driving System Toolbox[™]

Programmatically specify driving scenarios

```
% Create driving scenario
s = drivingScenario('SampleTime', 0.05);
% Add road
roadCenters = [0 0; 10 0; 40 20; 50 20]; % (m)
roadWidth = 5; % (m)
road(s,roadCenters,roadWidth)
plot(s)
```


R2017a

Automated Driving System ToolboxTM

Programmatically specify driving scenarios

```
% Create driving scenario
s = drivingScenario('SampleTime', 0.05);
% Add road
roadCenters = [0 0; 10 0; 40 20; 50 20]; % (m)
roadWidth = 5; % (m)
road(s, roadCenters, roadWidth)
plot(s)
% Add vehicle
egoCar = vehicle(s);
waypoints = roadCenters; % (m)
speed = 13.89; % (m/s) = 50 km/hr
trajectory(egoCar, waypoints, speed);
% Play scenario
while advance(s)
    pause(s.SampleTime);
```

end

Graphically author scenarios with Driving Scenario Designer

- Specify scenes
 - Roads
 - Lane markings
 - Actor trajectories
 - Actor size
 - Actor radar crosssection (RCS)
- Export scenes to MATLAB code

R2018a Automated Driving System Toolbox™

Explore effects of some radar detection generator parameters

Synthesize detections from radar transceiver

Phased Array System Toolbox[™] Automated Driving System Toolbox[™]

How to explore different tracking algorithms ?

Explore functionality of point multi-object object tracker

Some characteristics of multi-object point tracker

Overview: Sensor Fusion and Tracking Toolbox R2018b

Scenarios and Sensors Simulation

Tracking and Localization Algorithms

Code Generation

Visualization and Metrics

TITLETID ETH O EOTO

Explore functionality of prototype extended object tracker

Some characteristics of prototype extended object tracker

Learn about developing lidar application with these examples

Design algorithm with multiobject tracker and recorded vehicle data

Automated Driving System Toolbox[™]

Synthesize sensor data and driving scenarios

Automated Driving System Toolbox[™]

Extended object tracking

Automated Driving System ToolboxTM Sensor Fusion and Tracking ToolboxTM

Examples of how you can use MATLAB and Simulink to develop automated driving algorithms

Workflow for design and simulation of path planning for automobiles

Learn about developing path planning algorithms with these examples

 Plan path for automobile given pre-defined map
 Automated Driving
 System Toolbox[™]

Animate Sequence of Latitude and Longitude Coordinates

 Plot map tiles using World Street Map (Esri)
 Automated Driving System Toolbox[™]

Examples of how you can use MATLAB and Simulink to develop automated driving algorithms

Demo: Lane keeping assist (LKA) for distracted driver

Create highway double curve with drivingScenario

 Driver waypoints simulate distraction at curvature changes

MATLAB EXPO 2018

35

Reference example for LKA

Simulate distracted driver

Simulate lane keep assist at distraction events

Compare distracted and assisted results

 Detect lane departure and maintain lane during distraction

Simulate lane following by increasing minimum safe distance

Graphically edit scenarios with Driving Scenario Designer

Explore what is required to follow high curvature paths

Explore what is required to follow high curvature paths

How can I design with virtual scenarios?

Scenes	Driving Scenarios (cuboid)		
Testing	Controls Controls + sensor fusion		
Authoring	Driving Scenario Designer App drivingScenario programmatic API		
Sensing	Probabilistic radar detections Probabilistic vision detections Probabilistic lane detections		
MATLAB EX	PO 2018		

How can I design with virtual scenarios?

Scenes	<section-header></section-header>	<section-header><section-header></section-header></section-header>
Testing	Controls Controls + sensor fusion	Controls Controls + vision
Authoring	Driving Scenario Designer App drivingScenario programmatic API	Unreal Editor
Sensing	Probabilistic radar detections Probabilistic vision detections Probabilistic lane detections	Ideal camera (viewer)

Learn about synthesizing sensor detections to develop control algorithms with these examples

 Simulate and generate C++ for model-predictive control and sensor fusion algorithms
 MATLAB EXPO 2018

 Simulate and generate C++ for model-predictive control with lane detections

Generate Synthetic Detections from an Interactive Driving Scenario

 Edit roads, cuboid actors, and sensors with
 Driving Scenario Designer App drivingScenarioDesigner

Learn about modeling vehicle dynamics to develop control algorithms with these examples

- Simulate vehicle dynamics for closed loop design
 - Vehicle Dynamics BlocksetTM

MATLAB EXPO 2018

Co-simulate with Unreal
 Engine to set actor positions
 and get camera image

Vehicle Dynamics BlocksetTM

MathWorks can help you customize MATLAB and Simulink for your automated driving application

- Web based ground truth labeling
- Consulting project with Caterpillar
- <u>2017 MathWorks Automotive</u>
 <u>Conference</u>
 MATLAB EXPO 2018

- Lidar ground truth labeling
- Joint presentation with Autoliv
- SAE Paper 2018-01-0043
- 2018 MathWorks Automotive Conference

- Lidar sensor model for Unreal Engine
- Joint paper with Ford
- SAE Paper 2017-01-0107

Examples of how you can use MATLAB and Simulink to develop automated driving algorithms

