
1© 2015 The MathWorks, Inc.

Advanced Programming with MATLAB

2

Agenda

 MATLAB and memory
– What you as a programmer should know

 Passing arrays
 How structures use memory

 Functions of all types
– Introduction/Review of MATLAB function types
– Applications of new nested functions

 Solving optimization problems

 Building a graphical user interface for volume visualization

3

When Is Data Copied?

 Passing arrays to functions
– When does MATLAB copy memory?

function y = foo(x,a,b)
a(1) = a(1) + 12;
y = a*x+b;

 Calling foo
y = foo(1:3,2,4)

– i.e., x = 1:3, a = 2, b = 4

>> edit foo.m

SH1

4

In-place Optimizations

 When does MATLAB do calculations “in-place”?

x = 2*x + 3;

y = 2*x + 3;

5

In-place Optimizations

When does MATLAB do calculations “in-place”?

function showInPlace
xx = randn(n,1);
xx = myfunc(xx); % vs. yy = myfunc(xx)
xx = myfuncInPlace(xx); % vs. yy = myfuncInPlace(xx)

function x = myfuncInPlace(x)
x = sin(2*x.^2+3*x+4);

function y = myfunc(x)
y = sin(2*x.^2+3*x+4);

>> edit myfuncInPlace myfunc showInPlace
%separate functions, separate files

6

In-place Optimizations

y = myfunc(x);

x = myfunc(x);

y = myfuncInPlace(x);

x = myfuncInPlace(x);

M
e

m
o

ry

Time

7

Memory Used for Different Array Types

d = [1 2] % Double array

dcell = {d} % Cell array

dstruct.d = d % Structure

whos

>> edit overhead

8

How does MATLAB store data?
Container overhead

d Header (112)

Data

d = [1 2]

dcell = {d}

dcell Header (112)

Data

Cell Header (112)

dstruct.d = d

dstruct Header (112)

Data

Element Header (112)

Fieldname (64)

9

field
header

cell
header

field
name

unreported
variable header

data

Container Overhead

data

data

Command Data
Type

Reported
Memory

Unreported
Memory

Total
Memory

>> d = [1 2] Double 16 bytes 112 bytes 128 bytes 16 = 16

>> dcell = {[1 2]} Cell 128 bytes 112 bytes 240 bytes 16+112 = 128

>> dstruct.d = [1 2] Struct 192 bytes 112 bytes 304 bytes 16+64+112 = 192

16 bytes

64 bytes

112 bytes

112 bytes

10

MATLAB and Memory

How does MATLAB store structures?

n = 10000;

s.A = rand(n,n);

s.B = rand(n,n);

sNew = s;

s.A(1,1) = 17;

>> edit structmem1

11

MATLAB and Memory

How does MATLAB store structures?

im1.red = redPlane; % each plane is m x n
im1.green = greenPlane;
im1.blue = bluePlane;

versus

% each 1x3
im2(1,1).pixel = [red(1) green(1) blue(1)];
im2(2,1).pixel = [red(2) green(2) blue(2)];
...
im2(m,n).pixel = [red(m*n) green(m*n) …

blue(m*n)];

>> edit structmem2

12

Tables

 New fundamental data type

 For mixed-type tabular data
– Holds both data and metadata

 Supports flexible indexing

 Built-in functionality
(merge, sort, etc.)

13

Machine
Memory

Working with Big Data Just Got Easier

 Tall arrays let you use familiar MATLAB
functions and syntax to work with big
datasets, even if they don’t fit in memory

 Support for hundreds of functions in
MATLAB and Statistics and Machine
Learning Toolbox

 Works with Spark + Hadoop Clusters

Use tall arrays to manipulate and analyze
data that is too big to fit in memory

Tall Data

e.g. 100GB~
1TB

e.g.
4~8GB

Learn more at this session:
Big Data and Machine

Learning

Learn more at this session:
Big Data and Machine

Learning

14

Summary of Tall Array Capabilities

Provides purpose-built functions for use with
data that does not fit in memory

ASCII File
Database (SQL)
Spreadsheet
Custom Files

• table
• cell
• numeric
• cellstr & string
• Date & Time
• categorical

Data Access

(100’s of functions)

Math
Statistics
Missing Data
Visualization
Date/Time
String

Data Munging

Linear Model
Logistic Regression
Discriminant Analysis
K-means
PCA
Random Data Sampling
Summary Statistics

Machine Learning

15

Execution Environments for Tall Arrays

Process out-of-memory data on
your Desktop to explore,

analyze, gain insights and to
develop analytics

Spark+Hadoop

Local disk
Shared folders
Databases

Run on Compute Clusters,
or Spark if your data is

stored in HDFS, for large
scale analysis

Use Parallel Computing
Toolbox for increased

performance

16

Categorical Arrays

 New fundamental data type

 For discrete non-numeric data
– Values drawn from a finite set of

possible values ("categories”)

 More memory efficient than
a cell array of strings

 Can be compared using
logical operators
– Similar to numeric arrays

>> edit showCategorical.m

17

Strings
The better way to work with text

 Manipulate, compare, and store text data efficiently
>> "image" + (1:3) + ".png"

1×3 string array

"image1.png" "image2.png" "image3.png"

 Simplified text manipulation functions
– Example: Check if a string is contained within another string

 Previously: if ~isempty(strfind(textdata,"Dog"))

 Now: if contains(textdata,"Dog")

 Performance improvement
– Up to 50x faster using contains with string than strfind with cellstr

– Up to 2x memory savings using string over cellstr

18

Summary of MATLAB and Memory

 How MATLAB passes arrays to functions
– By value, with “lazy” copy or copy on write

– In-place optimization code pattern

 Memory use in array storage
– Atomic types vs. cell arrays and structures

– Array of structs vs. struct arrays
 i.e., s(300,300).red vs. s.red(300,300)

– Categorical arrays, tables, strings

19

MATLAB and Memory: Additional Resources

 Recorded Webinar:
– Tackling Big Data in MATLAB

– mathworks.com -> Recorded Webinars

 Memory Management information from doc page for memory

20

Functions

Everything you wanted to know,
but were afraid to ask

21

A comp.soft-sys.matlab Post

Question:

With the new function types introduced in R14, I am curious as to which methods would be preferable from a speed
standpoint. We have:
1. Functions defined in separate files

2. Subfunctions

3. Inline functions

4. Anonymous functions

5. Nested functions

Other than scope, persistence, or program structure, is there some difference that makes MATLAB work better with

the type?

22

comp.soft-sys.matlab Post Answered

Cleve’s Answer

Good question, and a hard one to answer. As MATLAB evolves, the answer will change. The function call
mechanism in the current version of MATLAB is pretty expensive, for any kind of function. One of the most
important tasks facing our Accelerator/JIT team today is to make function calls faster. This is why we have
introduced the @ notation for both function handles and anonymous functions. Future versions of MATLAB
should have improved speed for anything involving the @ sign.

Inline functions were an experiment in the use of the overloading mechanism that turned out to be useful. But we've
always regarded them as a bit of a hack. So our advice now is to phase out their use over time. Other than that,
your choice today among the other kinds of functions should be based on style and convenience.

23

Function Quiz

 Let’s see how much you know about functions in MATLAB

 This quiz covers
– Anonymous functions

– Nested functions

– Function handles

– Regular (“simple”) functions

– Subfunctions

 This quiz does not cover
– MEX functions, private functions, …

24

Function Quiz Review

 Regular (“simple”) functions

 Function handles

 Anonymous functions

 Local functions

 Nested functions

 Q: Which of these function types can be combined in a single file?

25

Advice

 You can use the function functions to explore details of the function
referred to by a particular function handle.

 NOTE: Changing the values of the struct output from functions does NOT
alter the function handle details!

26

Nested Function Applications

 Solving optimization problems

 Building a graphical user interface for volume visualization

 Building 2-figure GUIs (optional)

27

Application 1:
Solving Optimization Problems

 We get many posts on comp.soft-sys.matlab about optimization. The
problems fall into several catgories. The one we will address to today is:

– How to include extra parameters to define the objective function

28

Optimization Example (unconstrained)

Objective function:

a,b,c – “Regular” parameters
d,e – Additional parameters that might alter the type of problem by making the

objective function either
– non-smooth (d) or
– stochastic (e)

>> edit optimLocal.m

randnexxdcxxbxax 12
2
221

2
1

29

Application 2:
Building a Graphical User Interface for Volume Visualization

 Application: Building a custom tool for
volume visualization

 This example illustrates:
– Using function handles to export nested

functions

– Using nested functions for object
callbacks

30

Why Use Nested and Anonymous Functions?

Benefits of nested and anonymous functions

 More robust

 Changes in path cause fewer problems with function handles

 Data sharing and number of copies of data

– Memory savings, especially for large shared data

 Program structure

 Over time, higher performance

Additional benefits of nested (and sub) functions

 Scope and persistence

 Reduce variable and function namespace clutter

31

Summary and Advice
Anonymous Functions

 Create simple functions without creating m-files:
– fh = @(x,y) a*sin(x)*cos(y)

 Useful for “fun-funs” (function functions)
– Optimization

– Solving differential equations

– Numerical integration

– Plotting

– Array functions (cellfun, structfun, …)

 Convenient for simple callbacks
– getXLSData = @(worksheet) xlsread('records.xls', worksheet);

32

Summary and Advice
Nested Functions

 Embed one function within another, with shared, persistent workspace:
– function main

– function nest

– end

– end

 Useful for “fun-funs” (function functions)

 Very convenient for callbacks (shared workspace)

 Encapsulate functionality and data (export as function handles)

33

Function Usage Advice

 You can call functions without inputs using this notation:
y = foo();

 Put all nested functions at the bottom of the enclosing function. You may prefer to have
them defined right where you will use them, but this can become unwieldy.

 Place a comment next to a call to a nested function stating what workspace variables are
altered by the call (since the nested function can see the enclosing workspace).

34

More Function Usage Advice

 Nested functions are good when there is significant shared information (many pieces or
large arrays).

 Nested functions are very good when there is much large data to share for reading and
writing.

 Local functions (or private functions) are useful when users don't need these directly.
Those who need them can see.

 Data sharing inside local functions is only reading large arrays, not making copies and
changing them.

35

MATLAB Function Types: Additional Resources

 MATLAB Digest - September 2005
– Dynamic Function Creation with Anonymous and Nested Functions
– http://www.mathworks.com/company/newsletters/digest/2005/sept/dynfunctions.html

 Examples
– Anonymous functions
– http://www.mathworks.com/products/matlab/demos.html?file=/products/demos/shipping/matlab/anondemo.ht

ml

– Nested Functions
– http://www.mathworks.com/products/matlab/demos.html?file=/products/demos/shipping/matlab/nesteddemo.h

tml

 The Art of MATLAB Blog
– Look at Category: Function Handles
– http://blogs.mathworks.com/loren/

36

Summary

 MATLAB memory usage
– When is data copied

 Nested and anonymous functions
– Very good at data encapsulation

– Efficient for sharing memory between functions

– Another choice for name / variable scope

– Less clutter on MATLAB path

