MATLAB EXPO 2016

Navigating Big Data with MATLAB

Isaac Noh

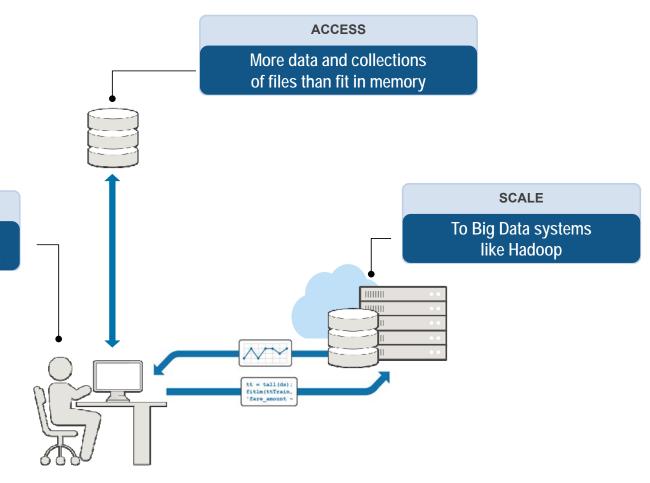
Application Engineer

How big is big?

What does "Big Data" even mean?

"Big data is a term for data sets that are so large or complex that traditional data processing applications are inadequate to deal with them."

Wikipedia


So, what's the (big) problem?

- Traditional tools and approaches won't work
 - Getting the data is hard; processing it is even harder
 - Need to learn new tools and new coding styles
 - Have to rewrite algorithms, often at a lower level of abstraction
- Quality of your results can be impacted
 - e.g., by being forced to work on a subset of your data

Big Data workflow

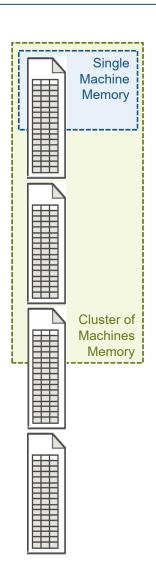
PROCESS AND ANALYZE

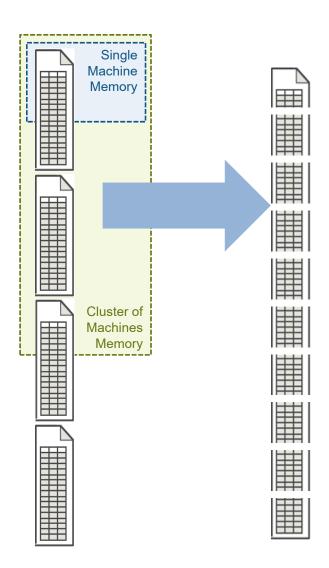
Adapt traditional processing tools or learn new tools to work with Big Data

Big solutions

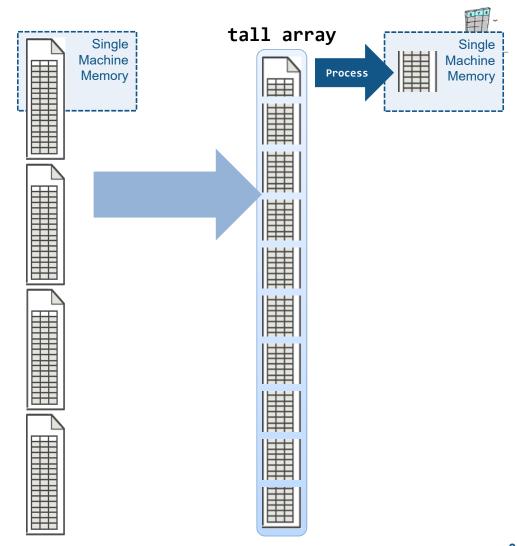
Wouldn't it be nice if you could:

- Easily access data however it is stored
- Prototype algorithms quickly using a local workstation
- Scale up to big data sets running on large clusters
- Using the same intuitive MATLAB syntax you are used to

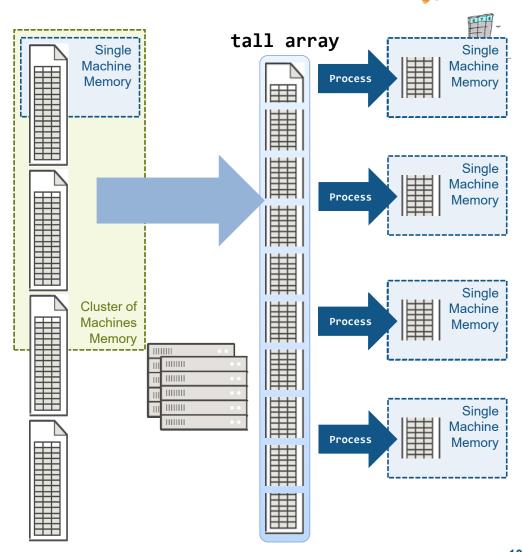

- For data that doesn't fit into memory
- Lots of observations (hence "tall")
- Looks like a normal MATLAB array
 - Supports numeric types, tables, datetimes, strings, etc...
 - Supports basic math, stats, indexing, etc.
 - Statistics and Machine Learning Toolbox support (clustering, classification, etc.)



- Data is in one or more files
- Typically tabular data
- Files stacked vertically
- Data doesn't fit into memory (even cluster memory)



 Automatically breaks data up into small "chunks" that fit in memory


- "Chunk" processing is handled automatically
- Processing code for tall arrays is the same as ordinary arrays

MATLAB EXPO 2016

9

- With Parallel Computing Toolbox, process several "chunks" at once
- Can scale up to clusters with MATLAB Distributed Computing Server

MATLAB EXPO 2016

10

MathWorks

Example: Working with Big Data in MATLAB

Objective: Create a model to predict the cost of a taxi ride in New York City

Inputs:

- Monthly taxi ride log files
- The local data set is small (~2 MB)
- The full data set is big (~25 GB)

Approach:

- Preprocess and explore data
- Develop and validate predictive model (linear fit)
 - Work with subset of data for prototyping
 - Scale to full data set on HDFS

12

Example: Prototyping

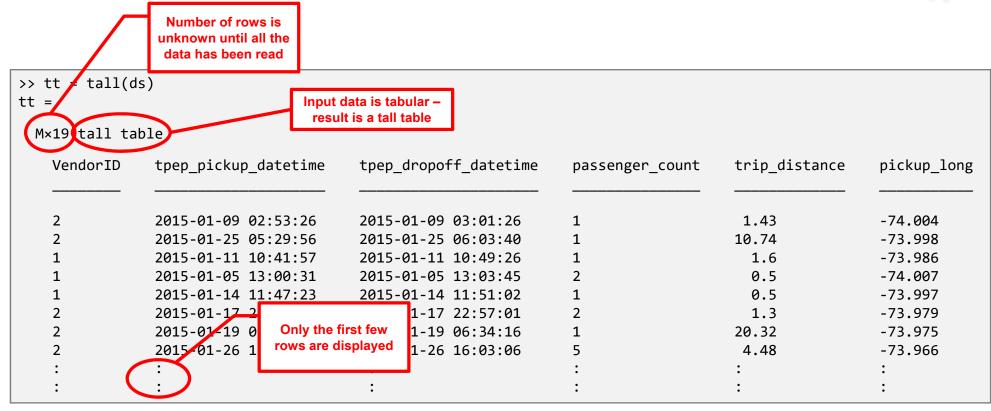
Preview Data

Description

Location: New York City

• Date(s): (Partial) January 2015

Data size: "small data" 13,693 rows / ~2 MB


VendorID	<pre>tpep_pickup_datetime</pre>	<pre>tpep_dropoff_datetime</pre>	passenger_count	trip_distance	pickup_long
2	2015-01-09 02:53:26	2015-01-09 03:01:26	1	1.43	-74.004
2	2015-01-05 02:33:20	2015-01-05 05:01:20	1	10.74	-73.998
1	2015-01-11 10:41:57	2015-01-11 10:49:26	1	1.6	-73.986
1	2015-01-05 13:00:31	2015-01-05 13:03:45	2	0.5	-74.007
1	2015-01-14 11:47:23	2015-01-14 11:51:02	1	0.5	-73.997
2	2015-01-17 22:49:44	2015-01-17 22:57:01	2	1.3	-73.979
2	2015-01-19 06:01:36	2015-01-19 06:34:16	1	20.32	-73.975
2	2015-01-26 15:17:21	2015-01-26 16:03:06	5	4.48	-73.966
2	2015-01-25 04:19:55	2015-01-25 04:24:49	5	1.28	-73.954
2	2015-01-31 18:27:28	2015-01-31 18:31:43	5	1.24	-73.969

Create a Tall Array

13

Calling Functions with a Tall Array

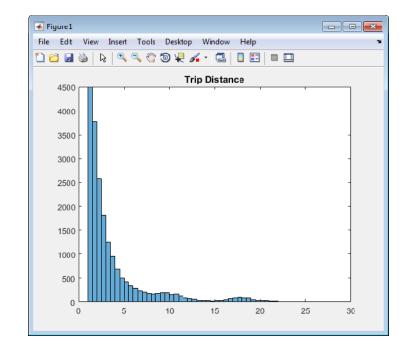
Once the tall table is created, can process much like an ordinary table

```
% Calculate average trip duration
mnTrip = mean(tt.trip_minutes, 'omitnan')
mnTrip =
    tall double
    ?
Preview deferred. Learn more.

% Execute commands and gather results into workspace
mn = gather(mnTrip)

Evaluating tall expression using the Local MATLAB Session:
    Pass 1 of 1: Completed in 4 sec
Evaluation completed in 5 sec
mn =
    15.2648
```

- Most results are evaluated only when explicitly requested (e.g., gather)
- MATLAB automatically optimizes queued calculations to minimize the number of passes through the data



Preprocess, clean, and explore data

```
% Remove some bad data
tt.speed_mph = tt.trip_distance ./ (tt.trip_minutes ./ 60);
ignore = tt.trip minutes <= 1 | ... % really short
   tt.trip_minutes >= 60 * 12 | ... % unfeasibly long
   tt.trip distance <= 1 | ... % really short
   tt.trip_distance >= 12 * 55 | ... % unfeasibly far
                                    % unfeasibly fast
   tt.speed mph > 55 | ...
                               % negative fares?!
   tt.total amount < 0 | ...
   tt.total amount > 10000;
                                    % unfeasibly large fares
tt(ignore, :) = [];
% Explore data
figure
histogram(tt.trip distance, 'BinLimits',[0 30])
title('Trip Distance')
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 6 sec
- Pass 2 of 2: Completed in 6 sec
Evaluation completed in 12 sec
```


15

Fit predictive model

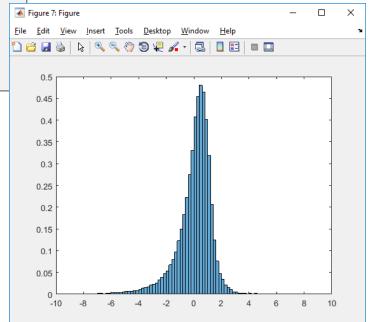
```
% Fit predictive model
model = fitlm(ttTrain, 'fare amount ~ 1 + hr of day + trip distance*trip minutes')
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 7 sec
Evaluation completed in 8 sec
model =
Compact linear regression model:
   fare amount ~ 1 + hr of day + trip distance*trip minutes
Estimated Coefficients:
                                                               tStat
                                                    SE
                                                                            pValue
                                  Estimate
    (Intercept)
                                       2.8167
                                                   0.038002
                                                                 74.12
   trip distance
                                       2.2207
                                                  0.006166
                                                                360.16
   hr of day
                                     0.001222
                                                  0.0019124
                                                               0.63901
                                                                             0.52282
   trip minutes
                                      0.24528
                                                  0.001793
                                                              136.79
   trip distance:trip minutes
                                  -0.00053185
                                                 0.00012339
                                                               -4.3102
                                                                          1.6336e-05
```

Number of observations: 58793, Error degrees of freedom: 58788

Root Mean Squared Error: 3.06

R-squared: 0.927, Adjusted R-Squared 0.927

F-statistic vs. constant model: 1.86e+05, p-value = 0



Predict and validate model

Evaluation completed in 15 sec

```
% Predict and validate
yPred = predict(model,ttValidation);
residuals = yPred - ttValidation.fare_amount;
figure
histogram(residuals,'Normalization','pdf','BinLimits',[-10 10])

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 8 sec
- Pass 2 of 2: Completed in 5 sec
```


Scale to the Entire Data Set

Description

- Location: New York City
- Date(s):

All of 2015

Data size: "Big Data"

150,000,000 rows / ~25 GB

Example: "small data" processing vs. Big Data processing

```
% Access the data
ds = datastore('taxiData\*.csv');
tt = tall(ds);
Big Data processing
```

```
% Calculate average trip duration
mnTrip = mean(tt.trip_minutes,'omitnan')

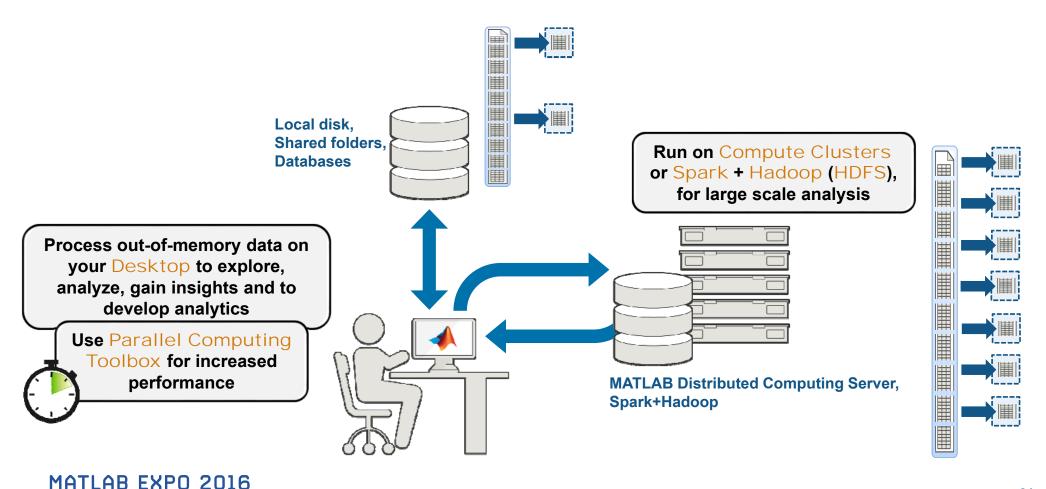
% Execute commands and gather results into workspace
mn = gather(mnTrip)

% Remove some bad data
tt.trip_minutes = minutes(tt.tpep_dropoff_datetime -
tt.tpep_pickup_datetime);
tt.speed_mph = tt.trip_distance ./ (tt.trip_minutes ./ 60);
ignore = tt.trip_minutes <= 1 | ...  % really short
    tt.trip_minutes >= 60 * 12 | ...  % unfeasibly long
    tt.trip_distance <= 1 | ...  % really short
    tt.trip_distance >= 12 * 55 | ...  % unfeasibly far
    tt.speed_mph > 55 | ...  % unfeasibly fast
    tt.total_amount < 0 | ...  % negative fares?!
    tt.total_amount > 10000;  % unfeasibly large fares
```


Example: Running on Spark + Hadoop

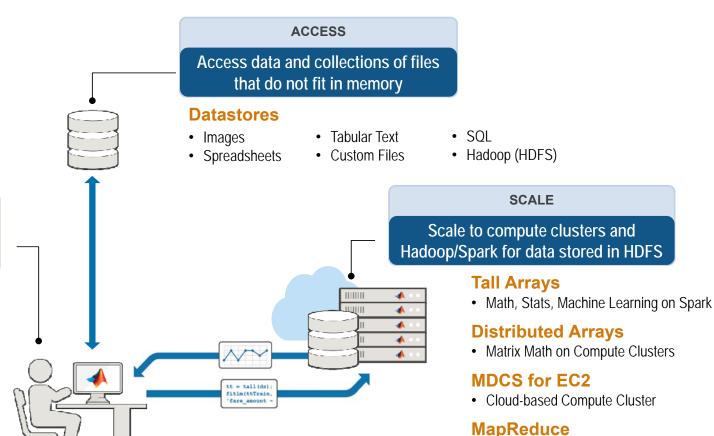
```
% Hadoop/Spark Cluster
numWorkers = 16;

setenv('HADOOP_HOME', '/dev_env/cluster/hadoop');
setenv('SPARK_HOME', '/dev_env/cluster/spark');


cluster = parallel.cluster.Hadoop;
cluster.SparkProperties('spark.executor.instances') = num2str(numWorkers);
mr = mapreducer(cluster);

% Access the data
ds = datastore('hdfs://hadoop01:54310/datasets/taxiData/*.csv');
tt = tall(ds);
```

MATLAB EXPO 2016 20


Summary for tall arrays

THILHB EXPU ZUID

Big Data capabilities in MATLAB

PROCESS AND ANALYZE

Purpose-built capabilities for domain experts to work with big data locally

Tall Arrays

- Math
- Visualization
- Statistics
- Machine Learning

GPU Arrays

- Matrix Math
- Image Processing

Deep Learning

Image Classification

MATLAB EXPO 2016

MATLAB API for Spark

Summary

- MATLAB makes it easy, convenient, and scalable to work with big data
 - Access any kind of big data from any file system
 - Use tall arrays to process and analyze that data on your desktop, clusters, or on Hadoop/Spark

There's no need to learn big data programming or out-of-memory techniques -- simply use the same code and syntax you're already used to.

For more information

- Advanced Data Analytics with MATLAB kiosk
- Website:

https://www.mathworks.com/solutions/big-data-matlab

Web search for:

"Big Data MATLAB"