
1© 2015 The MathWorks, Inc.

Software Development Practices

within MATLAB

David Sampson

2

I want to help you…

Design Architect Implement Share

…your MATLAB tools

3

What are your software development concerns?

▪ Accuracy

▪ Execution performance

▪ Development time

▪ Cost

▪ Compatibility

▪ Documentation

▪ Reusability

▪ Effective testing

▪ Integration

▪ Ease of collaboration

▪ Legacy code

▪ Liability

▪ Maintainability

▪ Model risk

▪ Robustness

▪ Developer expertise

▪ Software stack complexity

▪ …?

4

Agenda

▪ MATLAB Projects

▪ Version control integration

▪ Language features

▪ Development environment

▪ Testing & CI

▪ Toolbox distribution

▪ Design patterns

5

MATLAB Projects

6

Projects (MATLAB + Simulink Projects)

▪ Manage your files and path

▪ Analyze file dependencies

▪ Function refactoring

▪ Run startup & shutdown tasks

▪ Create project shortcuts

▪ Label and filter files

▪ Integrate source control

7

Managing your code with Projects

1. Create project

8

Managing your code with Projects

1. Create project

2. Set path and startup tasks

9

Managing your code with Projects

1. Create project

2. Set path and startup tasks

3. Explore dependencies

10

Managing your code with Projects

1. Create project

2. Set path and startup tasks

3. Explore dependencies

4. Label files Identify and run tests

11

Managing your code with Projects

1. Create project

2. Set path and startup tasks

3. Explore dependencies

4. Label files
Identify and run tests

…on Continuous Integration servers

12

Managing your code with Projects

1. Create project

2. Set path and startup tasks

3. Explore dependencies

4. Label files

5. Integrate source control

13

Version control

14

Version control

▪ Maintain backups, history, and

ability to restore

▪ Track changes and responsibility

▪ Simplify reconciling conflicting

changes

▪ Generate discussion

▪ Save you from yourself

15

Version control integration

▪ Manage your code from within

the MATLAB Desktop

▪ Git integrated into:

– Projects

– Current Folder browser

▪ Use Comparison Tool to view and

merge changes between revisions

16

Repo

Co-authoring workflows

Creating a repo:

▪ Initialize

▪ Add

▪ Clone

Making changes:

▪ Commit

▪ Push

▪ Branch

▪ Merge

branch

Repo

Repo

Repo Repo

commit
merge request

17

Implementation

18

Considerations when writing better, robust, and portable code

▪ Input validation

▪ Error handling

▪ Writing faster code using the MATLAB Profiler

▪ Writing code faster using the Live Editor

▪ Refactoring code to reduce complexity

▪ Writing code that works on all operating systems

19

Unactionable errors

>> y = myfunc(1:5)

Index exceeds matrix dimensions.

Error in mypkg1.mypkg1a.mypkg1ab.myfunc1 (line 9)

y(idx) = u(idx)*log(u_hat(idx))+(1-u(idx))*log(1-u_hat(idx));

Error in mypkg2.mypkg2a.myfunc2 (line 5)

y = mypkg1.mypkg1a.mypkg1ab.myfunc1(myVar1 .* myVar2);

Error in mypkg3.mypkg3a.myfunc3>@(x)mypkg2.mypkg2a.myfunc2(x) (line 4)

y = arrayfun(@(x) mypkg2.mypkg2a.myfunc2(x), myVar);

Error in mypkg3.mypkg3a.myfunc3 (line 4)

y = arrayfun(@(x) mypkg2.mypkg2a.myfunc2(x), myVar);

Error in myfunc (line 10)

20

▪ validateattributes

▪ assert

▪ isempty, isnan, isfinite, …

▪ narginchk

▪ inputParser

▪ Property validation for classes

Validating inputs

>> myfunc(1:5)

Error using myfunc (line 4)

Expected input to be of size 1x3, but it is of size

1x5.

>> myfunc([2 3 1])

Error using myfunc (line 4)

Expected input to be increasing valued.

21

Handling errors more elegantly

▪ error and warning

– Use identifiers

▪ try/catch

▪ MException

▪ errordlg and warndlg

22

MATLAB Profiler

▪ Total number of function calls

▪ Time per function call

▪ Highlights largest code bottlenecks

▪ Statement coverage of code

23

Programming aids in the Live Editor

▪ Automatically closed parentheses,

loops, and conditional blocks

▪ Context-aware coding guides

– Automatically suggest function names

variables, or file names

– List available Name/Value pairs

24

Quickly and safely refactoring code

▪ Live Editor shortcuts to refactor blocks of code into functions

25

Quickly and safely refactoring code

▪ Function refactoring

across files in Projects

26

Simple code quality and complexity assessment – checkcode

▪ Analyze all warnings and errors in a code

▪ McCabe Cyclomatic Complexity

– Measures complexity based on the number of linearly independent paths through a code

27

Code that runs everywhere

▪ Operating System-aware code

– fullfile

– ispc, ismac, isunix

▪ More reliable portability with Projects

– Consistent path management

– Automated startup/shutdown procedures

– Built-in file dependency analysis

>> fullfile("..","data","2019","April")

Windows: "..\data\2019\April"

Mac/Linux: "../data/2019/April"

28

Code maintenance

29

Code Compatibility Report

▪ Tool to help upgrade code to

latest and greatest MATLAB

▪ Identifies potential

compatibility issues

▪ Hundreds of checks for

incompatibilities, errors, and

warnings

Link to documentation

for updates

Go directly to the

line of code

30

▪ MATLAB Unit Testing Framework

▪ Performance Testing Framework

▪ App Testing Framework

Testing Frameworks

31

MATLAB Unit Testing Framework

▪ Script-based test

▪ Function-based test

▪ Class-based test

▪ Test integration with

Projects

32

Editor integration

▪ Added buttons to make testing more

readily accessible

▪ Testing your code should be as easy as

hitting the “Run” button!

33

App Testing Framework

▪ Verify app behavior with tests that programmatically perform gestures on a UI component

testCase.press(myApp.checkbox)

testCase.choose(myApp.discreteKnob, "Medium")

testCase.drag(myApp.continuousKnob, 10, 90)

testCase.type(myApp.editfield, myTextVar)

34

Continuous Integration (CI)

▪ A system to automate the building, testing, integration, and deployment of

code as it is being developed and maintained

▪ Popular CI systems: Jenkins, Travis, CircleCI , Bamboo, and others…

▪ Benefits:

– Detect integration bugs early

– Allow you to stop bugs from being accepted

– Track and report testing history

– Flexible testing schedules and triggers

35

Continuous Integration workflow

Source Control Trigger Build Post Build

▪ Git

▪ GitHub

▪ GitLab

▪ Subversion

▪ …

▪ Push

▪ Merge Request

▪ Pull Request

▪ Check In

▪ Scheduled

▪ Manual

▪ Publish:

– Test Results

– Coverage Results

– Performance

Results

▪ Accept Merge

Request

▪ Email Notification

▪ Run MATLAB / Simulink Tests

▪ Run Performance Tests

▪ Compile MEX Files

▪ Generate Code*

▪ Package Toolboxes

▪ Build Components with MATLAB

Compiler Stack*

▪ Integrate with other software

* Transformation products may require Client Access Licensing

36

Jenkins plugin

▪ Easily connect and configure

MATLAB with Jenkins

▪ Schedule automatic code

execution and testing:

– based on time of day

– whenever new code changes

are committed

37

Jenkins plugin configuration

▪ Locate MATLAB

▪ Identify repository to load

▪ Set build triggers

▪ Add build step

38

Jenkins plugin reports

▪ View testing results

▪ View code coverage

▪ View testing reports

39

Sharing your code – The traditional way

▪ Unzip the zip file

▪ Find the instructions and release notes

▪ Decide whether you want the thing

▪ Remove folders from old versions from the path

▪ Add folders to the path

▪ Save the path for next time

▪ Find the documentation

▪ Do work

40

Sharing your code – How should you share code?

It depends on who you are sharing your code with:

▪ Co-authors → Project

▪ End-user with MATLAB → Toolbox or App

▪ End-user without MATLAB → Deployment (application, library, C code …)

41

Sharing your code with MATLAB users – Packaging your code

▪ Toolbox Packaging

▪ App Packaging

• Combine files into one installation file

• Installs in MATLAB Add-Ons or Apps tab

• Documents required products

42

Sharing your code outside of MATLAB – Application Deployment

Share your applications as:

▪ Standalone software

▪ Web applications

▪ Language-specific libraries

▪ Generated code

MATLAB Compiler

MATLAB Compiler

MATLAB Compiler SDK

MATLAB Coder

43

Design Patterns

44

Preface: handles and values

▪ MATLAB has both value and handle classes

▪ Everyday MATLAB datatypes exhibit value behaviour

▪ Handle classes facilitate multiple references to the same object

▪ MATLAB’s copy-on-write optimization limits memory consumption

▪ MATLAB’s reference counter disposes of unused handle objects

Choose handle or value based on the need for multiple references.

45

Design patterns

▪ Observer

▪ Adapter

▪ Singleton

▪ Builder

▪ Memento

46

Observer pattern

▪ When an object changes state, how can an arbitrary number of dependent

objects react?

▪ How to avoid making the objects tightly coupled?

▪ Handle class for subject

▪ Event(s) on subject, possibly with custom event data

▪ Observers listen to events on subject

▪ Example: model with multiple views

47

Adapter pattern

▪ How can a class be reused that does not have an interface that a client

requires?

▪ How can classes that have incompatible interfaces work together?

▪ How can an alternative interface be provided for a class?

▪ Private property to store an instance of the reused class

▪ Dependent properties to forward gets and sets

▪ Wrapper generator using meta.class APIs

▪ Examples: chart, modified timer, map services

48

Singleton pattern

▪ How can it be ensured that a class has only one instance?

▪ How can the sole instance of a class be accessed easily?

▪ How can a class control its instantiation?

▪ How can the number of instances of a class be restricted?

▪ Private constructor

▪ Private property to store the object

▪ getInstance static method

▪ Example: pointer manager

49

Builder pattern

▪ How can a class create different representations of a complex object?

▪ How can a class that includes creating a complex object be simplified?

▪ MATLAB handle class

▪ create* method(s)

▪ Example: create unit from database

50

Memento pattern

▪ How can the internal state of an object be saved externally so that the

object can be restored to this state later?

▪ Saving to and loading from disk or database is a common case

▪ saveobj instance method

▪ loadobj static method

▪ ConstructOnLoad class attribute

▪ Examples: renaming a class, removing a property

51

Closing remarks

52

Recap

▪ MATLAB Projects

▪ Version control integration

▪ Language features

▪ Development environment

▪ Testing & CI

▪ Toolbox distribution

▪ Design patterns

53

Thank you.

Questions?

