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I want to help you…

Design Architect Implement Share

…your MATLAB tools
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What are your software development concerns?

▪ Accuracy

▪ Execution performance

▪ Development time

▪ Cost

▪ Compatibility

▪ Documentation

▪ Reusability

▪ Effective testing

▪ Integration

▪ Ease of collaboration

▪ Legacy code

▪ Liability

▪ Maintainability

▪ Model risk

▪ Robustness

▪ Developer expertise

▪ Software stack complexity

▪ …?
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Agenda

▪ MATLAB Projects

▪ Version control integration

▪ Language features

▪ Development environment

▪ Testing & CI

▪ Toolbox distribution

▪ Design patterns
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MATLAB Projects
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Projects (MATLAB  + Simulink Projects)

▪ Manage your files and path

▪ Analyze file dependencies

▪ Function refactoring

▪ Run startup & shutdown tasks

▪ Create project shortcuts

▪ Label and filter files

▪ Integrate source control
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Managing your code with Projects

1. Create project
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Managing your code with Projects

1. Create project

2. Set path and startup tasks
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Managing your code with Projects

1. Create project

2. Set path and startup tasks

3. Explore dependencies
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Managing your code with Projects

1. Create project

2. Set path and startup tasks

3. Explore dependencies

4. Label files Identify and run tests
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Managing your code with Projects

1. Create project

2. Set path and startup tasks

3. Explore dependencies

4. Label files
Identify and run tests

…on Continuous Integration servers
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Managing your code with Projects

1. Create project

2. Set path and startup tasks

3. Explore dependencies

4. Label files

5. Integrate source control
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Version control
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Version control

▪ Maintain backups, history, and 

ability to restore

▪ Track changes and responsibility

▪ Simplify reconciling conflicting 

changes

▪ Generate discussion

▪ Save you from yourself
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Version control integration

▪ Manage your code from within

the MATLAB Desktop

▪ Git integrated into:

– Projects

– Current Folder browser

▪ Use Comparison Tool to view and

merge changes between revisions
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Repo

Co-authoring workflows

Creating a repo:

▪ Initialize

▪ Add

▪ Clone

Making changes:

▪ Commit

▪ Push

▪ Branch

▪ Merge

branch

Repo

Repo

Repo Repo

commit
merge request
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Implementation
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Considerations when writing better, robust, and portable code

▪ Input validation

▪ Error handling

▪ Writing faster code using the MATLAB Profiler

▪ Writing code faster using the Live Editor

▪ Refactoring code to reduce complexity

▪ Writing code that works on all operating systems
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Unactionable errors

>> y = myfunc( 1:5 )

Index exceeds matrix dimensions.

Error in mypkg1.mypkg1a.mypkg1ab.myfunc1 (line 9)

y(idx) = u(idx)*log(u_hat(idx))+(1-u(idx))*log(1-u_hat(idx));

Error in mypkg2.mypkg2a.myfunc2 (line 5)

y = mypkg1.mypkg1a.mypkg1ab.myfunc1( myVar1 .* myVar2 );

Error in mypkg3.mypkg3a.myfunc3>@(x)mypkg2.mypkg2a.myfunc2(x) (line 4)

y = arrayfun( @(x) mypkg2.mypkg2a.myfunc2( x ), myVar );

Error in mypkg3.mypkg3a.myfunc3 (line 4)

y = arrayfun( @(x) mypkg2.mypkg2a.myfunc2( x ), myVar );

Error in myfunc (line 10)
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▪ validateattributes

▪ assert

▪ isempty, isnan, isfinite, …

▪ narginchk

▪ inputParser

▪ Property validation for classes

Validating inputs

>> myfunc( 1:5 )

Error using myfunc (line 4)

Expected input to be of size 1x3, but it is of size 

1x5.

>> myfunc( [2 3 1] )

Error using myfunc (line 4)

Expected input to be increasing valued.
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Handling errors more elegantly

▪ error and warning

– Use identifiers

▪ try/catch

▪ MException

▪ errordlg and warndlg
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MATLAB Profiler

▪ Total number of function calls

▪ Time per function call

▪ Highlights largest code bottlenecks

▪ Statement coverage of code
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Programming aids in the Live Editor

▪ Automatically closed parentheses, 

loops, and conditional blocks

▪ Context-aware coding guides

– Automatically suggest function names 

variables, or file names

– List available Name/Value pairs
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Quickly and safely refactoring code

▪ Live Editor shortcuts to refactor blocks of code into functions
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Quickly and safely refactoring code

▪ Function refactoring 

across files in Projects
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Simple code quality and complexity assessment – checkcode

▪ Analyze all warnings and errors in a code

▪ McCabe Cyclomatic Complexity

– Measures complexity based on the number of linearly independent paths through a  code



27

Code that runs everywhere

▪ Operating System-aware code

– fullfile

– ispc, ismac, isunix

▪ More reliable portability with Projects

– Consistent path management

– Automated startup/shutdown procedures

– Built-in file dependency analysis

>> fullfile("..","data","2019","April")

Windows: "..\data\2019\April"

Mac/Linux: "../data/2019/April"
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Code maintenance
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Code Compatibility Report

▪ Tool to help upgrade code to 

latest and greatest MATLAB

▪ Identifies potential 

compatibility issues

▪ Hundreds of checks for 

incompatibilities, errors, and 

warnings

Link to documentation

for updates

Go directly to the

line of code
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▪ MATLAB Unit Testing Framework

▪ Performance Testing Framework

▪ App Testing Framework

Testing Frameworks
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MATLAB Unit Testing Framework

▪ Script-based test

▪ Function-based test

▪ Class-based test

▪ Test integration with 

Projects



32

Editor integration

▪ Added buttons to make testing more 

readily accessible

▪ Testing your code should be as easy as 

hitting the “Run” button!
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App Testing Framework

▪ Verify app behavior with tests that programmatically perform gestures on a UI component

testCase.press(myApp.checkbox)

testCase.choose(myApp.discreteKnob, "Medium")

testCase.drag(myApp.continuousKnob, 10, 90)

testCase.type(myApp.editfield, myTextVar)
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Continuous Integration (CI)

▪ A system to automate the building, testing, integration, and deployment of 

code as it is being developed and maintained

▪ Popular CI systems: Jenkins, Travis, CircleCI , Bamboo, and others…

▪ Benefits:

– Detect integration bugs early

– Allow you to stop bugs from being accepted

– Track and report testing history

– Flexible testing schedules and triggers
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Continuous Integration workflow

Source Control Trigger Build Post Build

▪ Git

▪ GitHub

▪ GitLab

▪ Subversion

▪ …

▪ Push

▪ Merge Request

▪ Pull Request

▪ Check In

▪ Scheduled

▪ Manual

▪ Publish:

– Test Results

– Coverage Results

– Performance 

Results

▪ Accept Merge 

Request

▪ Email Notification

▪ Run MATLAB / Simulink Tests

▪ Run Performance Tests

▪ Compile MEX Files

▪ Generate Code*

▪ Package Toolboxes

▪ Build Components with MATLAB 

Compiler Stack*

▪ Integrate with other software

* Transformation products may require Client Access Licensing
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Jenkins plugin

▪ Easily connect and configure 

MATLAB with Jenkins

▪ Schedule automatic code 

execution and testing:

– based on time of day

– whenever new code changes 

are committed
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Jenkins plugin configuration

▪ Locate MATLAB

▪ Identify repository to load

▪ Set build triggers

▪ Add build step
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Jenkins plugin reports

▪ View testing results

▪ View code coverage

▪ View testing reports
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Sharing your code – The traditional way

▪ Unzip the zip file

▪ Find the instructions and release notes

▪ Decide whether you want the thing

▪ Remove folders from old versions from the path

▪ Add folders to the path

▪ Save the path for next time

▪ Find the documentation

▪ Do work
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Sharing your code – How should you share code?

It depends on who you are sharing your code with:

▪ Co-authors → Project

▪ End-user with MATLAB → Toolbox or App

▪ End-user without MATLAB → Deployment (application, library, C code …)
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Sharing your code with MATLAB users – Packaging your code

▪ Toolbox Packaging

▪ App Packaging

• Combine files into one installation file

• Installs in MATLAB Add-Ons or Apps tab

• Documents required products
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Sharing your code outside of MATLAB – Application Deployment

Share your applications as:

▪ Standalone software

▪ Web applications

▪ Language-specific libraries 

▪ Generated code

MATLAB Compiler

MATLAB Compiler

MATLAB Compiler SDK

MATLAB Coder
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Design Patterns
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Preface: handles and values

▪ MATLAB has both value and handle classes

▪ Everyday MATLAB datatypes exhibit value behaviour

▪ Handle classes facilitate multiple references to the same object

▪ MATLAB’s copy-on-write optimization limits memory consumption

▪ MATLAB’s reference counter disposes of unused handle objects

Choose handle or value based on the need for multiple references.
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Design patterns

▪ Observer

▪ Adapter

▪ Singleton

▪ Builder

▪ Memento
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Observer pattern

▪ When an object changes state, how can an arbitrary number of dependent 

objects react?

▪ How to avoid making the objects tightly coupled?

▪ Handle class for subject

▪ Event(s) on subject, possibly with custom event data

▪ Observers listen to events on subject

▪ Example: model with multiple views
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Adapter pattern

▪ How can a class be reused that does not have an interface that a client 

requires?

▪ How can classes that have incompatible interfaces work together?

▪ How can an alternative interface be provided for a class?

▪ Private property to store an instance of the reused class

▪ Dependent properties to forward gets and sets

▪ Wrapper generator using meta.class APIs

▪ Examples: chart, modified timer, map services
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Singleton pattern

▪ How can it be ensured that a class has only one instance?

▪ How can the sole instance of a class be accessed easily?

▪ How can a class control its instantiation?

▪ How can the number of instances of a class be restricted?

▪ Private constructor

▪ Private property to store the object

▪ getInstance static method

▪ Example: pointer manager
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Builder pattern

▪ How can a class create different representations of a complex object?

▪ How can a class that includes creating a complex object be simplified?

▪ MATLAB handle class

▪ create* method(s)

▪ Example: create unit from database
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Memento pattern

▪ How can the internal state of an object be saved externally so that the 

object can be restored to this state later?

▪ Saving to and loading from disk or database is a common case

▪ saveobj instance method

▪ loadobj static method

▪ ConstructOnLoad class attribute

▪ Examples: renaming a class, removing a property
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Closing remarks
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Recap

▪ MATLAB Projects

▪ Version control integration

▪ Language features

▪ Development environment

▪ Testing & CI

▪ Toolbox distribution

▪ Design patterns
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Thank you.

Questions?


