
1© 2015 The MathWorks, Inc.

Simplifying Requirements Based 

Verification with Model-Based 

Design

Fraser Macmillen



2

Requirements & Model-Based Design
Requirements

Models Tests
Simulink Test



3

Verification & Validation Products

86 slides of new features in 2019…



4

DOORS 9 Baseline Navigation

Simulink Requirements is aware of 

baseline in DOORS 9

Specified Baseline

1.0 1.１ 1.2

Navigate



5

Augment referenced requirements 

with additional details

▪ Add additional custom attributes without 

modifying imported content

– Update restores data from external source 

and preserves additional content 

▪ Export to ReqIF for roundtrip workflow of 

local edits with third party tool 

Unlock and Edit Referenced Requirements

See: Roundtrip Workflows with ReqIF Files

https://www.mathworks.com/help/slrequirements/ug/roundtrip-with-reqif-files.html


6

Test Specification Report

• Generate report in PDF, ZIP or DOCX format consisting of test 

specifications (models, inputs, baseline, assessments etc)

• Customization through templates for report formatting

• Custom sections to add extra content that are user specific



7

But what are my requirements for this talk? 

1. I shall expand awareness and capability in the use of our tools 

that support verification of requirements

2. I shall not repeat content from previous EXPOs

3. I shall deliver content appropriate to a masterclass

4. I shall make it interesting!



8

Minimising
the less we have to deal with the simpler it is

Insight
insight leads to understanding and makes our work simpler 

Automation

to speed up the process and avoid errors makes our work simpler

Requirements  Based 

Verification with Model-Based Design

Simplifying



9

Minimising
the less we have to deal with the simpler it is

Insight
insight leads to understanding and makes our work simpler 

Automation

to speed up the process and avoid errors makes our work simpler

Requirements  Based 

Verification with Model-Based Design

Simplifying



10

Minimising – being at the right level

Requirements at the right level

Verification at the right level

Tracing to the right level



11

Minimising – handling multiple levels

Example

Control system requirements specify the need for filtering of certain signals

The design uses a reusable custom filter to implement the requirement 

There are lower level requirements for the filter behaviour itself

Let’s start by creating some links to an instance of the custom 
filter in the design



12

Minimising



13

Minimising – handling multiple levels

When linking a requirement to a Simulink block… 

- Can link from either end

- The Simulink block is always the source

- The requirement is always the destination

- The link is saved in the file associated with the source: 

i.e. [modelFileName].slmx



14

Minimising – handling multiple levels

Linking Between Requirements At Different Levels

The prime purpose of traceability is to infer what is the origin/parent/source of an object. 

i.e. a link is from child to parent, from source to destination

i.e. the source is the lower level requirement

the destination is the upper level requirement

The link is saved in the file associated with the source

So: click on source (lower-level requirement) first and create link from the parent 
requirement…



15

Minimising



16

Minimising - Links



17

Minimising - Links



18

Minimising

Using re-usable components can help 

- minimise requirements

- minimise requirement links



19

Minimising



20

Minimising
the less we have to deal with the simpler it is

Insight
insight leads to understanding and makes our work simpler 

Automation

to speed up the process and avoid errors makes our work simpler

Requirements  Based 

Verification with Model-Based Design

Simplifying



21

Insight
Requirements

Models Tests
Simulink Test

COVERAGE

Aggregate Top-level and 

Component Model Tests
Tests Trace in 

Coverage Report

Requirements Trace in Coverage Report



22

Insight & Understanding - Coverage



23

Insight - Observers



24

Observers: Separate verification logic from design

• Access nested signals

• Without modifying interface

Design Model

Observer Model

Test Harness Model



25

Observers



26

Insight – Logical & Temporal Assessments



27

Translate textual requirements into unambiguous Assessments

• Compose assessments 

using form based editor

• View assessments as 

English-like sentence

• Review and debug 

temporal assessment 

results

• Link to requirements

Temporal Assessment Editor

View and Debug Assessment Results



28

Temporal Assessments



29

Insight - What if verification is by analysis, not simulation?Insight



30

What if verification is by analysis, not simulation?



31

Minimising
the less we have to deal with the simpler it is

Insight
insight leads to understanding and makes our work simpler 

Automation

to speed up the process and avoid errors makes our work simpler

Requirements  Based 

Verification with Model-Based Design

Simplifying



32

Simplification – Automation

Examples:

- Checking parameter values against requirements

- Continuous Integration



33

API



34

Simplification – Automation

Programmatic Interface:

- Find and interrogate requirements and links

- Use to create custom artefacts or utilities

Example…



35

Parameter consistency



36

Simplification – Automation - Continuous Integration (CI)

Continuous Integration (CI) originated as a software development process in 

which developers integrate their code into a shared repository on a regular basis. 

Each commit into a repository is verified by an automated build and test.

These tests may be a pre-curser to pushing the changes to a main branch

Continuous Integration can be applied to Mode-Based Design workflows



37

Simplification – Automation – Continuous Integration (CI)

How quickly can one set up a continuous integration project to 
run Simulink Tests against requirements?

!

How many lines of MATLAB code are required?

!



38

Simplification – Automation - CI



39

Simplification – Automation - Continuous Integration (CI)

How quickly can one set up a continuous integration project to 
run Simulink Tests against requirements?

< 5 minutes!

How many lines of MATLAB code are required?

- None!



40

Simplification – Automation - CI



41

Simplification – Automation - Continuous Integration (CI)

https://blogs.mathworks.com/developer/2018/08/23/gitlab-jenkins-workflow/

https://blogs.mathworks.com/developer/2018/08/23/gitlab-jenkins-workflow/


42

Best practices can minimise the work required

Model-Based verification tools continue to develop to provide insight

- more tool integration

- more ways of accessing information you need intuitively & unobtrusively

- more control over granularity

Automation can be quick to set up, and offers significant benefits

Requirements  Based 

Verification with Model-Based Design

Simplifying



43

Learn More

Key products covered in this presentation: 

▪ Simulink Requirements

▪ Simulink Test

▪ Simulink Coverage

▪ System Composer

Learn more at Verification, Validation and Test Solution Page:

mathworks.com/solutions/verification-validation.html

fmacmill@mathworks.com

https://www.mathworks.com/products/simulink-requirements.html
https://www.mathworks.com/products/simulink-test.html
https://uk.mathworks.com/products/simulink-coverage.html
https://uk.mathworks.com/products/system-composer.html
https://www.mathworks.com/solutions/verification-validation.html
mailto:fmacmill@mathworks.com

