MATLAB EXPO 2019

Sensor Fusion and Tracking for Autonomous Systems

Marc Willerton Senior Application Engineer MathWorks

Abstract

- There is an exponential growth in the development of increasingly autonomous systems. These
 systems range from road vehicles that meet the various NHTSA levels of autonomy, through
 consumer quadcopters capable of autonomous flight and remote piloting, package delivery drones,
 flying taxis, and robots for disaster relief and space exploration. Work on autonomous systems
 spans industries and includes academia as well as government agencies.
- In this talk, you will learn to design, simulate, and analyze systems that fuse data from multiple sensors to maintain position, orientation, and situational awareness. By fusing multiple sensors data, you ensure a better result than would otherwise be possible by looking at the output of individual sensors.
- Several autonomous system examples are explored to show you how to:
 - Define trajectories and create multiplatform scenarios
 - Simulate measurements from inertial and GPS sensors
 - Generate object detections with radar, EO/IR, sonar, and RWR sensor models
 - Design multi-object trackers as well as fusion and localization algorithms
 - Evaluate system accuracy and performance on real and synthetic data

Agenda

- Introduction
- Technology overview of perception
- Sensor models for sensor fusion and tracking
- Building simulation scenarios
- Developing a Multi-Object Tracker
- Tracking from multiple platforms
- Connecting trackers to a control system
- Q&A

Agenda

- Introduction
- Technology overview of perception
- Sensor models for sensor fusion and tracking
- Building simulation scenarios
- Developing a Multi-Object Tracker
- Tracking from multiple platforms
- Connecting trackers to a control system
- Q&A

Sensor fusion and tracking is...

9

Timeline of Technology Advances

Multi-object tracking

Air Traffic Control

Computer Vision for Transportation

Multi-sensor Fusion for Autonomous Systems

Localization

Today

Timeline

Fusion Combines the Strengths of Each Sensor

What is Localization?

Agenda

- Introduction
- Technology overview of perception
- Sensor models for sensor fusion and tracking
- Building simulation scenarios
- Developing a Multi-Object Tracker
- Tracking from multiple platforms
- Connecting trackers to a control system
- Q&A

Sensor Models for Sensor Fusion and Tracking

>	Altimeter	altimeterSensor	>> imu = imuSensor						
>	GPS	gpsSensor	imu =						
			imuSensor with properties:						
>	IMU	imuSensor	IMUType: 'accel-gyro' SampleRate: 100 Temperature: 25	<pre>>> imu.Gyroscope ans =</pre>					
		irSensor	Accelerometer: [1×1 accelparams]	gyroparams with properties:					
>	Infrared	irSignature	Gyroscope: [1×1 gyroparams] RandomStream: 'Global stream'	MeasurementRange: Inf rad/s					
				Resolution: 0 (rad/s)/LSB ConstantBias: [0 0 0] rad/s					
>	INS	insSensor	>> imu.Accelerometer	AxesMisalignment: [0 0 0] %					
>	Radar	monostaticRadarSensor	ans =	NoiseDensity: [0 0 0] (rad/s)/√Hz BiasInstability: [0 0 0] rad/s RandomWalk: [0 0 0] (rad/s)*√Hz					
		radarEmitter	accelparams with properties:						
		radarSensor	MeasurementRange: Inf m/s ²	TemperatureBias: [0 0 0] (rad/s)/°C TemperatureScaleFactor: [0 0 0] %/°C					
>	Sonar	rcsSignature	Resolution: 0 (m/s ²)/LSB	AccelerationBias: [0 0 0] (rad/s)/(m/s ²)					
		sonarEmission	ConstantBias: [0 0 0] m/s ² AxesMisalignment: [0 0 0] %						
		sonarEmitter	NoiseDensity: [0 0 0] (m/s ²)/√Hz						
		sonarSensor	BiasInstability: [0 0 0] m/s ²						
		tsSignature	Randomwalk: $[0 \ 0 \ 0]$ $(m/s^2)^* \sqrt{Hz}$						
MA	ITLAB EXPO	2019	TemperatureBias:[0 0 0](m/s²)/°CTemperatureScaleFactor:[0 0 0]%/°C						

Exploring gyro model in Sensor Fusion and Tracking Toolbox

```
params = gyroparams
```

```
% Generate N samples at a sampling rate of Fs with a sinusoidal frequency
% of Fc.
N = 1000;
Fs = 100;
Fc = 0.25;
t = (0:(1/F_s):((N-1)/F_s)).';
acc = zeros(N, 3);
angvel = zeros(N, 3);
angvel(:,1) = sin(2*pi*Fc*t);
imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);
[~, gyroData] = imu(acc, angvel);
figure
plot(t, angvel(:,1), '--', t, gyroData(:,1))
xlabel('Time (s)')
ylabel('Angular Velocity (rad/s)')
title('Ideal Gyroscope Data')
legend('x (ground truth)', 'x (gyroscope)')
```


🔺 MathWorks

Exploring gyro model in Sensor Fusion and Tracking Toolbox

Imposing ADC Quantisation Effects

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params); imu.Gyroscope.Resolution = 0.5; % (rad/s)/LSB

Imposing White Noise

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params); imu.Gyroscope.NoiseDensity = 1.25e-2; % (rad/s)/sqrt(Hz)

🔺 MathWorks

Exploring gyro model in Sensor Fusion and Tracking Toolbox

Imposing Brown Noise

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params); imu.Gyroscope.RandomWalk = 9.1e-2; % (rad/s)*sqrt(Hz)

1.5 x (ground truth) x (gyroscope) 1 Angular Velocity (rad/s) 0.5 0 -0.5 -1 2 0 3 5 6 8 9 10 1 Time (s)

Imposing Pink Noise

imu = imuSensor('SampleRate', Fs, 'Gyroscope', params); imu.Gyroscope.BiasInstability = 2.0e-2; % rad/s

MathWorks[®]

Exploring gyro model in Sensor Fusion and Tracking Toolbox

Imposing Temperature Scaled Bias

```
imu = imuSensor('SampleRate', Fs, 'Gyroscope', params);
imu.Gyroscope.TemperatureScaleFactor = 3.2; % %/(degrees C)
```

```
standardTemperature = 25; % degrees C
temperatureSlope = 2; % (degrees C)/s
```

```
temperature = temperatureSlope*t + standardTemperature;
```

```
gyroData = zeros(N, 3);
for i = 1:N
    imu.Temperature = temperature(i);
    [~, gyroData(i,:)] = imu(acc(i,:), angvel(i,:));
end
```

For more information, <u>see example</u>.

Levels of Fidelity: Radar Detections vs. I/Q Samples Simulation

radar = monostaticRadarSensor('Rotator')

radar = monostaticRadarSensor('Mechanical Raster')
MATLAB EXPU 2019

radar = monostaticRadarSensor('Sector')

radar = monostaticRadarSensor('Electronic Raster')

Generating Radar Detections in MATLAB

radar =	
monostaticRadarSensor with p	roperties:
SensorIndex:	1
UpdateRate:	10
ScanMode:	'Mechanical'
MountingLocation:	[0 0 -30]
MountingAngles:	[0 0 0]
MaxUnambiguousRange:	100000
MaxUnambiguousRadialSpeed:	200
FieldOfView:	[2x1 double]
MaxMechanicalScanRate:	[2x1 double]
MechanicalScanLimits:	[2x2 double]
MechanicalAngle:	[2x1 double]
LookAngle:	[2x1 double]
DetectionProbability:	0.9000
FalseAlarmRate:	1.0000e-06

Use get to show all properties

TBC – we will see how to build this as a scenario later... 20

Fusing Sensor Data Improves Localization

MATLAB EXPO 2019

21

Example <u>here</u>

Fuse IMU & GPS for Self-Localization of a UAV

MATLAB EXPO 2019

22

Fuse IMU & Odometry for Self-Localization in GPS-Denied Areas

Fuse IMU & Odometry for Self-Localization in GPS-Denied Areas

Flexible Workflows Ease Adoption: Wholesale or Piecemeal

Stream Data to MATLAB from IMUs Connected to Arduino

MEMS Devices

9-axis (Gyro + Accelerometer + Compass)

6 axis (Gyro + Accelerometer)

Up to 200 Hz sampling rate

New Hardware and Multisensor Positioning Examples R2019b

Remove Bias from Angular Velocity Measurement

Remove gyroscope bias from an IMU using imufilter.

Read and Parse NMEA Data Directly From GPS Receiver

Read the data from a GPS receiver connected to a computer, and parse the National Marine Electronics Association(NMEA) data.

Estimating Orientation Using Inertial Sensor Fusion and MPU-9250

Get data from an InvenSense MPU-9250 IMU sensor and to use the 6-axis and 9-axis fusion algorithms in the sensor data to

Estimate Orientation Through Inertial Sensor Fusion

Use 6-axis and 9-axis fusion algorithms to compute orientation. There are several algorithms to compute orientation from inertial

MathWorks[®]

Logged Sensor Data Alignment for Orientation Estimation

Align and preprocess logged sensor data. This allows the fusion filters to perform orientation estimation as expected. The logged data was

Agenda

- Introduction
- Technology overview of perception
- Sensor models for sensor fusion and tracking
- Building simulation scenarios
- Developing a Multi-Object Tracker
- Tracking from multiple platforms
- Connecting trackers to a control system
- Q&A

Building a Simulation Scenario

Test Tracker Performance on Pre-Built Benchmark Trajectories

Reference

MATLAB EXPO 2019

W.D. Blair, G. A. Watson, T. Kirubarajan, Y. Bar-Shalom, "Benchmark for Radar Allocation and Tracking in ECM." Aerospace and Electronic Systems IEEE Trans on, vol. 34. no. 4. 1998 31

To go further on localization, see also

Inertial Sensor Noise Analysis Using Allan Variance

Use the Allan variance to determine noise parameters of a MEMS gyroscope. These parameters can be used to model the gyroscope in R2018b

Rotations, Orientation and Quaternions

Reviews concepts in threedimensional rotations and how quaternions are used to describe orientation and rotations.

Open Script

R2018b

-1

Z-axis Rotation (Yaw)

Y-axis Rotation (Roll)

X-axis Rotation (Pitch)

60

Lowpass Filter Orientation

Using Quaternion SLERP

Use spherical linear interpolation

(SLERP) to create sequences of

guaternions and lowpass filter noisy

trajectories. SLERP is a commonly

SLERP Interpolation Parameter : hrange = 0.4, hbias = 0.4

80

Noise

- Tout

100

Open Script

field strength along a sensor's X,Y and Z axes. Accurate magnetic field measurements are essential for

R2019a

Open Script

R2018b

Agenda

- Introduction
- Technology overview of perception
- Sensor models for sensor fusion and tracking
- Building simulation scenarios
- Developing a Multi-Object Tracker
- Tracking from multiple platforms
- Connecting trackers to a control system
- Q&A

A Multi-object Tracker is More than a Kalman Filter

Tracking Algorithm Development Workflow

Components of a Multi-Object Tracker

Components of a Multi-Object Tracker Tracking Filter

Linear Kalman Filter Example

1. Create the measured positions from a constant-velocity trajectory

```
vx = 0.2;
vy = 0.1;
T = 0.5;
pos = [0:vx*T:2;5:vy*T:6]';
```

```
2. Specify initial position and velocity
```

MATLAB EXPO 2019

```
x = 5.3;
y = 3.6;
initialState = [x;0;y;0];
KF = trackingKF('MotionModel','2D Constant Velocity','State',initialState);
```


State Initialisation (e.g. constant velocity/acceleration/turn and Motion Models available or use your own

3. Run Kalman Filter

for k = 1:size(pos,1)
 pstates(k,:) = predict(KF,T);
 cstates(k,:) = correct(KF,pos(k,:));
end

More information here

Lowest

Complexity

Best

Performance

Components of a Multi-Object Tracker Track Association and Management

One or more sensors generating multiple detections from multiple targets – detections must be:

1. Gated - determine which detections are valid candidates to update existing tracks

2. Assigned* – make a track to detection assignment. <u>Assignment approaches</u> include:

- > Global Nearest Neighbour Minimise overall distance of track to detection assignments
- > Joint Probability Data Association Soft assignment so all gated detections make weighted contributions to a track
- > Track Orientated Multiple Hypothesis Tracking Allows data association to be postponed until more information is received

Track maintenance is required for creation (tentative status), confirmation, deletion of tracks (after coasting) > Can use history or score based logic

Advanced Topic – <u>Track to Track Fusion</u>:

MATLAB EXPO 2019

More information here

* Some trackers (e.g. PHD Filter) don't require assignment 38

More information here

Components of a Multi-Object Tracker Track Association and Management

ans =

Track Deletion

MATLAR FXPD 2019

>> h({},3) objectTrack with properties:

TrackID:	1		
BranchID:	0	>>	n({},4)
SourceIndex:	0	~~	D (1) 5)
UpdateTime:	3	11	II((1,5)
Age:	3	~	h(1) 6)
State:	[6×1 double]	11	
StateCovariance:	[6×6 double]	>>	$h({},7)$
StateParameters:	[1×1 struct]		
ObjectClassID:	0		
TrackLogic:	'History'		
TrackLogicState:	[0 1 1 0 0]		
IsConfirmed:	1		
IsCoasted:	1		
IsSelfReported:	1		
ObjectAttributes:	[1×1 struct]		

ans =

Data

0×1 objectTrack array with properties:

TrackID BranchID SourceIndex UpdateTime Age State StateCovariance StateParameters ObjectClassID TrackLogic TrackLogicState IsConfirmed IsCoasted IsSelfReported ObjectAttributes h =

trackerGNN with properties:

TrackerIndex: 0 FilterInitializationFcn: 'initcvekf' Assignment: 'MatchPairs' AssignmentThreshold: [30 Inf] MaxNumTracks: 100 MaxNumSensors: 20

TrackLogic: 'History' ConfirmationThreshold: [2 3] DeletionThreshold: [5 5]

HasCostMatrixInput: false HasDetectableTrackIDsInput: false StateParameters: [1×1 struct]

> NumTracks: 0 NumConfirmedTracks: 0

39

Search

Example of Multi-Object Tracking: Multifunction Radar: Search and Track

Example <u>here</u>

Example of Multi-Object Tracking: Multifunction Radar: Search and Track

Example of Multi-Object Tracking: Multifunction Radar: Search and Track

Search Beam Grid

Target 1 Detected

0.000000	sec:	Search	[-30.000000 0.000000]
0.010000	sec:	Search	[-27.692308 0.000000]
0.020000	sec:	Search	[-25.384615 0.000000]
0.030000	sec:	Search	[-23.076923 0.000000]
0.040000	sec:	Search	[-20.769231 0.000000]
0.050000	sec:	Search	[-18.461538 0.000000]
0.060000	sec:	Search	[-16.153846 0.000000]
0.070000	sec:	Search	[-13.846154 0.000000]
0.080000	sec:	Search	[-11.538462 0.000000]
0.090000	sec:	Search	[-9.230769 0.000000]
0.100000	sec:	Search	[-6.923077 0.000000]
0.110000	sec:	Search	[-4.615385 0.000000]
0.120000	sec:	Search	[-2.307692 0.000000]
0.130000	sec:	Search	[0.000000 0.000000] Target detected at 29900

Example of Multi-Object Tracking: Multifunction Radar: Search and Track

Radar Azimuth Coverage

Detection Confirmed and Track 1 Created

0.000000	sec:	Search	[-30.000000 0.000000]
0.010000	sec:	Search	[-27.692308 0.000000]
0.020000	sec:	Search	[-25.384615 0.000000]
0.030000	sec:	Search	[-23.076923 0.000000]
0.040000	sec:	Search	[-20.769231 0.000000]
0.050000	sec:	Search	[-18.461538 0.000000]
0.060000	sec:	Search	[-16.153846 0.000000]
0.070000	sec:	Search	[-13.846154 0.000000]
0.080000	sec:	Search	[-11.538462 0.000000]
0.090000	sec:	Search	[-9.230769 0.000000]
0.100000	sec:	Search	[-6.923077 0.000000]
0.110000	sec:	Search	[-4.615385 0.000000]
0.120000	sec:	Search	[-2.307692 0.000000]
0.130000	sec:	Search	[0.000000 0.000000] Target detected at 29900.000000 m
0.140000	sec:	Confirm	[-0.000586 -0.000034] Created track 1 at 29900.000000 m

MATLAB EXPO 2019

Ο

Example of Multi-Object Tracking:

Multifunction Radar: Search and Track

Example of Multi-Object Tracking: Performing What-If Analysis

Example of Multi-Object Tracking: Performing What-If Analysis


```
tracker = trackerGNN( ...
'FilterInitializationFcn',@initCVFilter,...
'MaxNumTracks', numTracks, ...
'MaxNumSensors', 1, ...
'AssignmentThreshold',gate, ...
'TrackLogic', 'Score', ...
'DetectionProbability', pd, ...
'FalseAlarmRate', far, ...
'Volume', vol, 'Beta', beta);
```

```
tracker = trackerGNN( ...
'FilterInitializationFcn',@initIMMFilter,...
'MaxNumTracks', numTracks, ...
'MaxNumSensors', 1, ...
'AssignmentThreshold',gate, ...
'TrackLogic', 'Score', ...
'DetectionProbability', pd, ...
'FalseAlarmRate', far, ...
'Volume', vol, 'Beta', beta);
```


Example of Multi-Object Tracking: Performing What-If Analysis

tracker = trackerTOMHT(... 'FilterInitializationFcn',@initIMMFilter,... 'MaxNumTracks', numTracks, ... 'MaxNumSensors', 1, ... 'AssignmentThreshold',[0.2,1,1]*gate, ... 'TrackLogic', 'Score', ... 'DetectionProbability', pd, ... 'DetectionProbability', pd, ... 'FalseAlarmRate', far, ... 'Volume', vol, 'Beta', beta, ... 'MaxNumHistoryScans', 10, ... 'MaxNumHistoryScans', 5,... 'NScanPruning', 'Hypothesis', ... 'OutputRepresentation', 'Tracks');

Example of Multi-Object Tracking: Comparing Trackers and Tracking Filters

False track Dropped track

TrackID	AssignedTruthID	Surviving	TotalLength	DivergenceStatus
1	2	true	190	false
2	NaN	false	77	true
8	3	true	111	false
TruthID	AssociatedTrackID	TotalLengt	n BreakCount	EstablishmentLength
2	1	192	0	4
3	8	192	1	2

TrackID	AssignedTruthID	Surviving	TotalLength	DivergenceStatus				
1	2	true	190	false				
2	3	true	191	false				
TruthID	AssociatedTrackID	TotalLengt	n BreakCount	EstablishmentLengt				
2	1	192	0	2				
3	2	192	0	2				

R2019**b**

Simulink Support for Multi-Object Tracking

SIM	IULATION	DEBUG	MOD	ELING	FORMAT	APPS												Alt			BACK 📙 🕤 🔄	· ? ·
4	🔁 Open 🔹				Signal	Stop Time 19.02 Normal	•			Data		Bird's Eve										
TNEW	Print V	Browser	Signals	Viewer	Table	📬 Fast Restart	Back -	▼ Fo	invard	Inspector	Analyzer	Scope										-
er	CloselySpace	edTargetTrackin	gVariantSubsyste	em			SIMULATE	-			REVIE	WRESULIS										3
Brows	• •	🔄 渣 Clos	elySpacedTarget	TrackingVariant	Subsystem 🕨																	operty
Mode	e,																					Inspec
	K 7																					tor
	⇒																					
		-		1.2							1.2											
		Exam	ple I	rackin	g Clo	sely Spa	iced la	argets	s Uno	der Ar	nbigu	lity wi	th GNI	N								
		_			_			_														
										Tra	ckerJF	DA_IN	/M			Detect	ion	PlotJF	DA_IN	/IM		
			De	etection)etectio	n_	2					Dottool			5			
			Datal	00																		
			Read	der						0		Co	nfirmed ⁻	Fracks		Tracks	5	0				
																G			1			
				Lime					ime									Plot	Tracks	5		
								G														
											Trac	kers										

Point object vs. Extended object

Point object

- Distant object represented as a single point
- One detection per object per scan

- Extended object
 - High resolution sensors generate <u>multiple detections per object</u> per scan

Extended Object Tracking Example

Tracking with Lidar (Even more points!!)

JPDA Tracker with IMM

MATLAB EXPO 2019

Pre-process point cloud data to extract objects of interest. Example here. 52

To go further on tracking with a single sensor, see also

Air Traffic Control

Generate an air traffic control scenario, simulate radar detections from an airport surveillance radar (ASR), and configure a global

Open Script

Introduction to Using the Global Nearest Neighbor Tracker

Configure and use the global nearest neighbor (GNN) tracker.

Tracking Maneuvering Targets

Track maneuvering targets using various tracking filters. The example shows the difference between filters that use a single motion model and

Open Script

Open Script

Agenda

- Introduction
- Technology overview of perception
- Sensor models for sensor fusion and tracking
- Building simulation scenarios
- Developing a Multi-Object Tracker
- Tracking from multiple platforms
- Connecting trackers to a control system
- Q&A

MathWorks

Multi-platform Scenario Generation

Visualize Detections and Measurement Uncertainties

MATLAB EXPO 2019

Example <u>here</u>

Visualize Track Accuracy

Tune and Compare Trackers with Assignment Metrics

Assess Tracker Performance with Assignment Metrics

Multi-platform Scenario Generation Jamming Scenario

Multi-platform Scenario Generation Positioning with direction only measurements

Where are the <u>real</u> targets? How to remove the ghosts?

Example <u>here</u>

Agenda

- Introduction
- Technology overview of perception
- Sensor models for sensor fusion and tracking
- Building simulation scenarios
- Developing a Multi-Object Tracker
- Tracking from multiple platforms
- Connecting trackers to a control system
- Q&A

Simulate a lane detection and lane following system

Simulate a lane detection and lane following system

helperMonoSensor.m * +
classdef helperMonoSensor < handle
properties
% Sensitivity for the lane segmentation n
Lane SegmentationSensitivity = 0.25:
</pre>

Visual Perception Using Monocular Camera Automated Driving Toolbox[™] R2017a

Simulate a lane detection and lane following system Challenge with noisy lanes

Approaching car gets confused with road

A MathWorks

Simulate a lane detection and lane following system Integrate noisy lane rejection and tracking

With correction

Simulate a lane detection and lane following system

Integrate noisy lane rejection and tracking

Example: Before Correction

Example: After Correction

Simulate a lane detection and lane following system Tracker Setup and Configuration

- Two instances of Kalman tracker to track left and right lanes independently.
- Initialize trackers for first valid lanes using "ConfigureKalmanFilter"
- Input Parameters for tracking: A,B,C coefficients of parabolic lane boundaries
- Motion model : Constant Acceleration
- Correct tracker for every valid lane

Simulate a lane detection and lane following system Steering Angle deviation for simulation run

MathWorks[®]

Sensor Fusion and Tracking ...

Q&A

MATLAB EXPO 2019

Marc Willerton (<u>mwillert@mathworks.com</u>)