Education Master Class

Preparing Future Engineers and Scientists for the Challenges of Digital Transformation

Martina Sciola

Digital Transformation Era

Machine Learning for Real-time Optimization of Energy Usage

MathWorks[®]

CETO, a Wave Farm built with Model-Based Design

Augmented Reality Visualization of blood flow with SLAM technology

Why Digital Transformation?

[From en.wikipedia.org]

- "Sample-size 1" Increasingly individualized products
- "Smart products"
 - Autonomous machines that do not require costly programming to meet new requirements
 - Intelligent products that collect data to optimize processes and develop new products
 - "Servitization" · Opportunities for innovative business models and services

What Tomorrow's Engineers and Scientists Need to Know

- Control, Signal Processing, Optimization, Computer Vision
- Abstraction, Modelling, and Simulation

AND

Multidomain System Development

AND

- Distributed and Connected Systems
- Using Cloud Platforms and Big Data Processing
- AI and Data Science

Project-Based Learning with MATLAB and Simulink

Treat engineering students like engineers Hands-on experience of working on hardware and software Solve authentic problems in myriad contexts Increase student interest and improve learning https://www.mathworks.com/hardware-support/home.html

Today's Topics: Three Exercises to Develop That Know-How

Quadcopter Simulation

- Develops Computational Thinking for complex systems
- Enables comparisons of theory and simulation
- Principles of control and path planning

Arduino Mobile Rover

- Model-Based Design for autonomous vehicle
- Integrates control, communication, path planning, and localization
- Multidisciplinary system

Triplex Pump Digital Twin

- Complex industrial application
- Combines engineering and data science
- Cloud computing

Today's Topics: Three Exercises to Develop That Know-How

Quadcopter Simulation

Arduino Mobile Rover

Triplex Pump Digital Twin

- Develops Computational Thinking for complex systems
- Enables comparisons of theory and simulation
- Principles of control and path planning

Quadcopter Simulation

Develop Understanding of Technical concepts

— 📣 MathWorks[®]

Quadcopter: Control Design

Develop Understanding of Technical concepts

Today's Topics: Three Exercises to Develop That Know-How

Quadcopter Simulation

Arduino Mobile Rover

Triplex Pump Digital Twin

- Model-Based Design for autonomous vehicle
- Integrates control, communication, path planning, and localization
- Multidisciplinary system

Arduino Mobile Rover in Action

Figure 2	🛋 Figure 2: Map of the Robot — 🗌												
File Edit	View	Insert	Tool	s Des	ktop	Window	Help					N	
100			,		,	,	,	,	1	,			
90	-					0					-		
80	-										-		
70	-										-		
60	-										-		
50	-					0					-		
40	-										-		
30	-2										-		
20	-										-		
10	-	f									-		
0													
Ű.)	10	20	30	40	50	60	70	80	90	100		

Mobile Rover Basics

Workflow

2. Deploy to hardware

3. Integrate with localization using Wi-Fi

Modelling and Simulation Rover kinematics

Modelling and Simulation Path Planning and Motion Control

Workflow

3. Integrate with localization using Wi-Fi

Deploy to Hardware

눰 roverHwPath - Simulink

Deploy to Hardware

Workflow

1. Modelling and simulation

2. Deploy to hardware

Get Location Data over Wi-Fi

- RGB threshold applied
- Noise removed
- Centroid identified

Parrot Minidrones

Today's Topics: Three Exercises to Develop That Know-How

Quadcopter Simulation

Arduino Mobile Rover

Triplex Pump Digital Twin

- Complex industrial application
- Combines engineering and data science
- Cloud computing

GE)

Triplex Pump

Predictive Maintenance Using Digital Twins

How can I teach students these concepts if I don't have a real pump?

Prevent system downtime

by sending Sensor Data

to a Predictive Maintenance algorithm

created using a Digital Twin and

Machine Learning model in MATLAB.

Triplex Pump

- Crankshaft drives three plungers
 - Each 120 degrees out of phase
 - One chamber always discharging
 - Smoother flow than single or duplex piston pumps

A MathWorks

Predictive Maintenance Workflow

- Sensor data isn't always available
 - Failure conditions difficult to reproduce
 - Time consuming or costly to generate

Solution: Build digital twin and generate sensor data using simulation

Developing algorithm is complex

 Requires complex concepts and analysis
 Solution: Use MATLAB to simplify process of developing and deploying algorithm

Bring these exercises to your classroom!

Quadcopter Simulation

- Develops Computational Thinking for complex systems
- Enables comparisons of theory and simulation
- Principles of control and path planning

Arduino Mobile Rover

- Model-Based Design for autonomous vehicle
- Integrates control, communication, path planning, and localization
- Multidisciplinary system

Triplex Pump Digital Twin

- Complex industrial application
- Combines engineering and data science
- Cloud computing

Key takeaways

- Digital Transformation is revolutionizing the industry
- New graduates will be expected to address challenges like these
- Experience with tools and workflows used in industry make students more hireable

EDU

GOV

Bildungsnetzwerk Technik Österreich

Vision 2040: Austria is world leader in STEM education

[[]From Google Maps]

Mission

Strengthen STEM education and secure local industry in Austria

Strategy

Connect stakeholders in academia, industry and government. Initiate, and support high-impact STEM projects.

Projects Multicopter for teaching and research

COM

Bildungsnetzwerk Technik Österreich

Österreichische Mathematische Gesellschaft

Bundesministerium

und Forschung

Bildung, Wissenschaft

Gov

MATLAB EXPO 2019

Com

MathWorks[®]

CALL TO ACTION!

Build relationships
Partner
Design joint projects
Actively collaborate

Thank

you!