MATLAB EXPO 2019

Pixels to Features to Models
Object Detection and Image Segmentation

Matt Elliott
Agenda

- **Introduction**
 - Applications
 - Computer vision tasks
 - Choosing an approach

- **Examples**
 - ‘Traditional’ image processing
 - Deep learning

- **Getting started**
Computer Vision Tasks

Automated Driving

Medical Imaging

Manufacturing
Computer Vision Tasks

Where are the cars?
Where can I drive?
How many parts?
Are they damaged?
Is this a tumour?
How large is it?
Computer Vision Tasks

Image classification

Object detection

Semantic segmentation

Instance segmentation

MATLAB EXPO 2019

Adapted from arXiv:1704.06857
Two approaches to computer vision

‘Traditional’ Image Processing
Two approaches to computer vision

Machine Learning
Machine Learning v Deep Learning

Machine Learning learns tasks using manually extracted **features**.

Deep Learning learns both features and tasks directly from data.
Examples

Two examples to demonstrate these approaches:

1. Traditional image processing for segmentation
2. Deep learning for object detection
Example 1: Part Inspection

Challenge:
- Find all of the items in the image
- Classify them - hook, nut or washer

Data
- Small number of images, unlabelled
- Taken from fixed position, controlled lighting
Two approaches to computer vision

‘Traditional’ Image Processing
Load Image

Import image

```matlab
I = imread('nutsAndBolts.png');
```

Convert to grayscale

```matlab
Igray = rgb2gray(I);
imshow(Igray)
```
Segmentation

- Next we want to segment the image

- Two routes:
 - Writing MATLAB code
 - Apps (and then generating code)
Two routes:
- Writing MATLAB code
- Apps (and then generating code)
In code

```matlab
BW = imbinarize(Igray, 'adaptive', 'Sensitivity', 0.52,...
                   'ForegroundPolarity', 'dark');
```
In code

```matlab
BW = imbinarize(Igray, 'adaptive', 'Sensitivity', 0.52,...
    'ForegroundPolarity', 'dark');
```

```matlab
BW = imcomplement(BW);
```
In code

```matlab
BW = imbinarize(Igray, 'adaptive', 'Sensitivity', 0.52,...
    'ForegroundPolarity', 'dark');

BW = imcomplement(BW);

radius = 9;
decomposition = 0;
se = strel('disk', radius, decomposition);
BW = imclose(BW, se);
```
In code

```matlab
BW = imbinarize(Igray, 'adaptive', 'Sensitivity', 0.52,...
    'ForegroundPolarity', 'dark');

BW = imcomplement(BW);

radius = 9;
reconstruction = 0;
se = strel('disk', radius, decomposition);
BW = imclose(BW, se);

se2 = strel('disk', 3, 0);
BW = imopen(BW, se2);
```
In code

```matlab
BW = imbinarize(Igray, 'adaptive', 'Sensitivity', 0.52,
    'ForegroundPolarity', 'dark');

BW = imcomplement(BW);

radius = 9;
decomposition = 0;
se = strel('disk', radius, decomposition);
BW = imclose(BW, se);

se2 = strel('disk', 3, 0);
BW = imopen(BW, se2);

BW = imfill(BW, 'holes');
```
Classification

Going to classify the parts based on their area

```matlab
[regions, numPixelRegions] = bwlabel(BW);
imshow(label2rgb(regions))
```
Classification

Going to classify the parts based on their area

```matlab
[regions, numPixelRegions] = bwlabel(BW);
imshow(label2rgb(regions))

stats = regionprops(regions, 'all');
for k=1:length(stats)
    text(stats(k).Centroid1, stats(k).Centroid2, ...
        sprintf('%04d', stats(k).Area), 'Hor', 'Center', 'Vert', 'middle')
end
```
Classification

```matlab
histogram(Area, 1000:100:4000)
xlabel('Area (pixels)')
ylabel('Number of Parts')
```

```matlab
minArea = [1300 1900 3200];
maxArea = [1800 2200 4100];
partNames = {'nut', 'ring', 'screw'};
partColors = {'magenta', 'green', 'cyan'};
Ipars = 1;
for k=1:3
    idx = Area > minArea(k) & Area < maxArea(k);
    Ipars = insertObjectAnnotation(Ipars,...
        'rectangle', vertcat(stats(idx).BoundingBox),...)
    partNames{k}, 'Color', partColors{k});
end
imshow(Ipars)
```
Example 1: Part Inspection

- ‘Basic’ image processing can solve this problem well
- Single feature (area) can be used to classify
- Fast, and easy to interpret

MATLAB provides:
- High-level functions to chain together
- Apps to get started/learn functions
- Simple route to deployment
Adding more features

- More complex classifications will require more features
- More features leads to a more complicated model
 - Machine Learning
- Other ways to extract features
 - e.g. Visual bag of words

```matlab
stats = regionprops(labeled, 'all');
```
Example 2: Deep Learning

Challenge:
- Build an object detector to find cars

Data:
- Many images, each containing one or more cars
- Large variations in angle, lighting etc
- Labelled with bounding boxes (hopefully)
Two approaches to computer vision
Deep Learning Workflow

Prepare Data
- Data access and preprocessing
- Ground truth labeling

Train Model
- Model design, Hyperparameter tuning
- Model exchange across frameworks
- Hardware-accelerated training

Deploy
- Multiplatform code generation (CPU, GPU)
- Edge deployment
- Enterprise Deployment
Dedicated MATLAB apps for automating and simplifying the labelling process.
Prepare Data

- Dedicated MATLAB apps for automating and simplifying the labelling process
- Split data in training and test sets
- Datastore objects to manage collections of data

```matlab
imdsTrain = imageDatastore(trainingDataTbl{:, 'imageFilename'});
bldsTrain = boxLabelDatastore(trainingDataTbl{:, 'vehicle'});
trainingData = combine(imdsTrain, bldsTrain);
```
Train Model

- Using YOLOv2 model architecture
 - Start-of-the-art object detector
 - Capable of running on real time video
 - Documented example

- Two stages:
 - Feature extraction layers – use a pretrained research network
 - Detector layers – build ourselves

- Use Deep Network Designer to build the network graphically
Train Model

Layer Library:
- Input:
 - imageInputLayer
 - image3dInputLayer
 - sequenceInputLayer
 - rollInputLayer

Convolution and Fully Connected:
- convolution2dLayer
- convolution3dLayer
- groupedConvolution2dLayer
- transposedConv2dLayer
- transposedConv3dLayer
- fullyConnectedLayer

Properties:
- Name: conv
- Filter Size: 3, 3
- Num Filters: 1024
- Stride: 1, 1
- Dilation Factor: 1, 1
- Padding: same
- Weights: []
- Bias: []
- Weight Learn Rate Factor: 1
- Weight L2 Factor: 1
- Bias Learn Rate Factor: 1
- Bias L2 Factor: 0
- Weights Initializer: glorot

Overview:
Train Model

Next define training options

```matlab
options = trainingOptions('sgdm', ...
    'MiniBatchSize', 16, ..., ...
    'InitialLearnRate',1e-3, ...
    'MaxEpochs',20);
```

And train the model

```matlab
detector = trainYOLov2ObjectDetector(trainingData, lgraph, options);
```
Testing

Evaluate model performance on validation images

```matlab
I = imread(testDataTbl.imageFilename{1});

% Run the detector.
[bboxes,scores] = detect(detector,I);

% Annotate detections in the image.
I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
imshow(I)
```
Testing

Evaluate model performance across training and test sets:
- Recall – what proportion of the cars do I detect?
- Precision – of the detections I make, what proportion are correct

Look out for:
- Underfitting – performance poor on training and test data
- Overfitting – good performance on training data, poor on test data

Iterate to improve the model
Example 2: Deep Learning

- Deep learning a good fit because of variation in the data
- Learns both a feature representation and a detection model

MATLAB provides:
- Graphical tools for labelling and network design
- Pretrained models to build on top of
Deploying Algorithms

MATLAB Coder
- C, C++
- GPU Coder

MATLAB Compiler
- C/C++
- Java
- Python
- .NET
- MATLAB Production Server

Enterprise Systems
- Standalone Application
- MATLAB Production Server

Embedded Hardware
- C, C++
- CUDA

```matlab
for k=1:max
    x = fft(dat)
    y = 20*log10
end
```
Musashi Seimitsu Industry Co., Ltd.
Detect Abnormalities in Automotive Parts

Automated visual inspection of 1.3 million bevel gear per month

MATLAB use in project:
- Preprocessing of captured images
- Image labelling and annotation
- Deep learning based analysis
 - Various transfer learning methods (Combinations of CNN models, Classifiers)
 - Estimation of defect area using Class Activation Map
 - Abnormality/defect classification
- Deployment to NVIDIA Jetson using GPU Coder
Summary

- Segmentation and object detection form the basis of many common computer vision tasks
- Select image processing or machine learning approaches based on specifics of your problem

- MATLAB supports full workflow for both routes:
 - Easy data management
 - Apps to get started
 - Robust implementations of mathematical methods
 - Visualisations tools
 - Deployment to enterprise and embedded systems
 - Wide range of examples to adapt to your projects
What Next?

- Deep Learning Onramp

- Other talks
 - AI techniques for Signal, Time-series and Text Data
 - Automated Driving System Design

- Demo stands
 - Deep Learning and Reinforcement Learning
 - Driverless – Science Museum exhibition stand

- Doc examples

- Application Engineer support