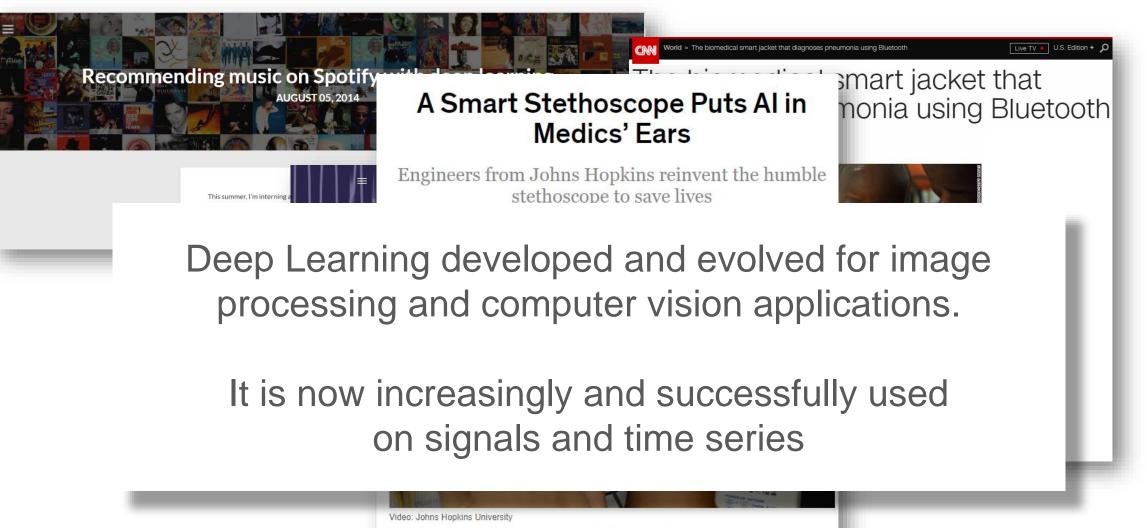
MATLAB EXPO 2019

AI Techniques in MATLAB for Signal, Time-Series, and Text Data

Sylvain Lacaze

Al and Deep Learning for Signals in the News



MATLAB EXPO 2019

Tech for a Noisy World: Researchers simulated an extremely noisy environment in the lab (the sound meter shows levels of around 70 decibels). They compared the audio heard through a top-notch commercial stethoscope, in which the breathing sounds are mixed with ambient noise, to that heard through the Johns Hopkins smart stethoscope, which uses active acoustic filtering to isolate the breathing sounds.

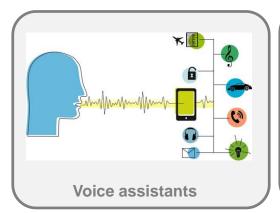
The Use of Deep Learning is Growing Across Industries

Aerospace, Defense and Communications

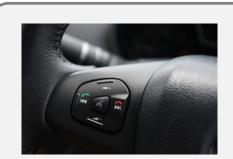
Communications devices, security

Multi-standard communications receivers, drone recognition

Consumer Electronics and Digital Health

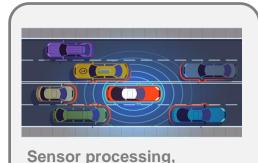


Automotive



Voice control enabled Infotainment

MATLAB EXPO 2019

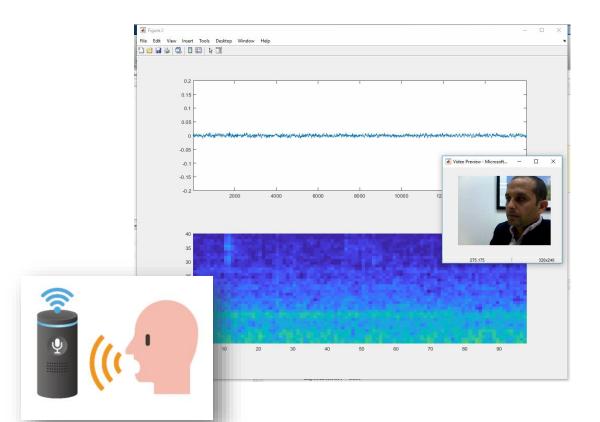


Sensor processing, automated driving

Industrial Automation

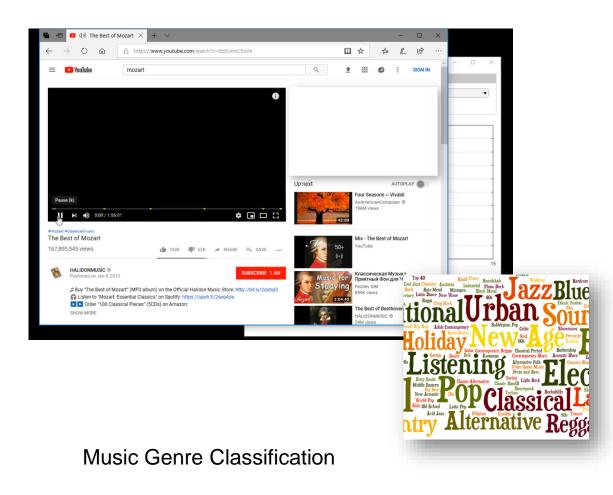
Condition monitoring

Application Examples Using MATLAB – Audio and Speech



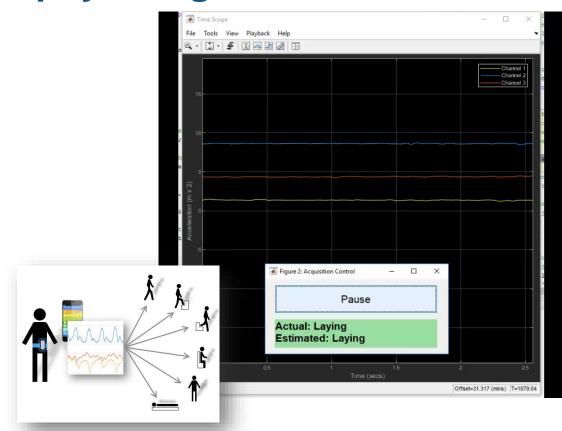
Speech Command Recognition (a.k.a. "Keyword Spotting")

https://www.mathworks.com/help/deeplearning/e xamples/deep-learning-speech-recognition.html



https://www.mathworks.com/help/audio/examples/musicgenre-classification-using-wavelet-time-scattering.html

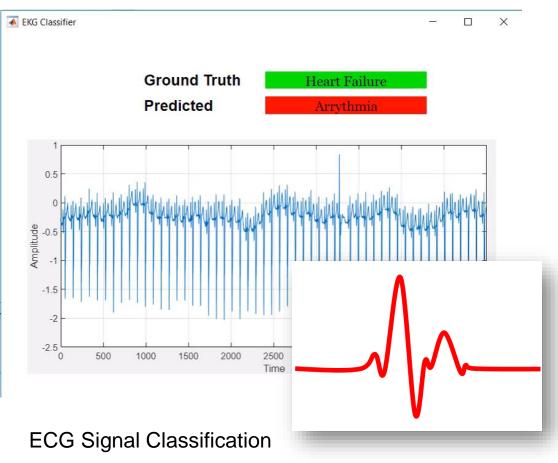
Application Examples Using MATLAB – Industrial and physiological sensors



Human Activity Recognition

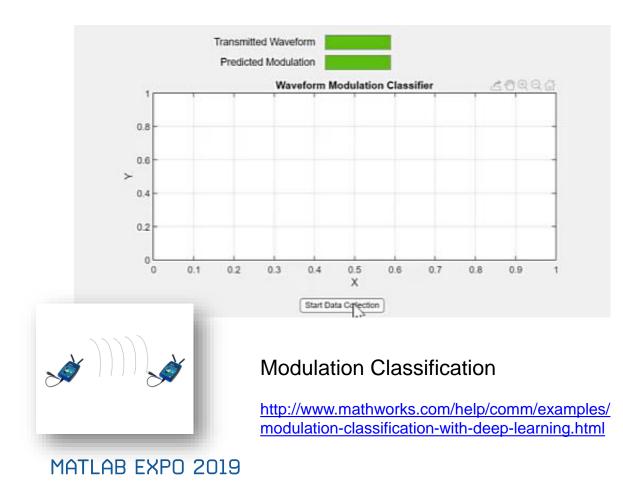
https://www.mathworks.com/help/deeplearning/examples/seq uence-to-sequence-classification-using-deep-learning.html

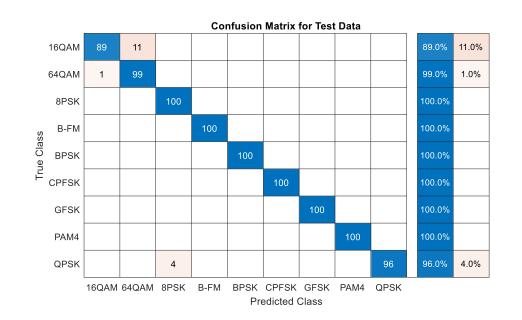
MATLAB EXPO 2019



https://www.mathworks.com/help/signal/examples/classifyecg-signals-using-long-short-term-memory-networks.html

Application Examples Using MATLAB – Radar and Communications



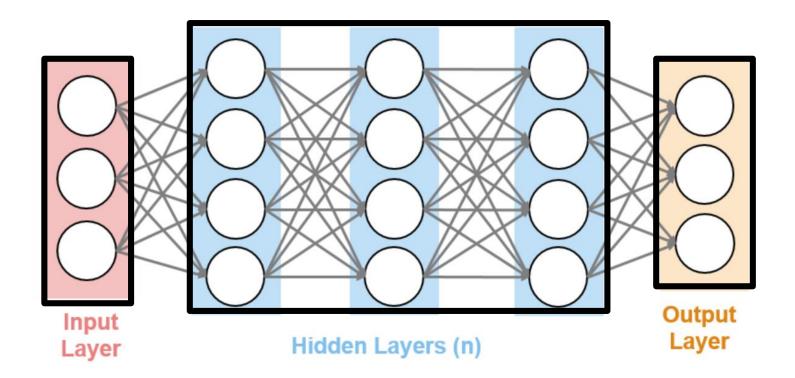


Agenda

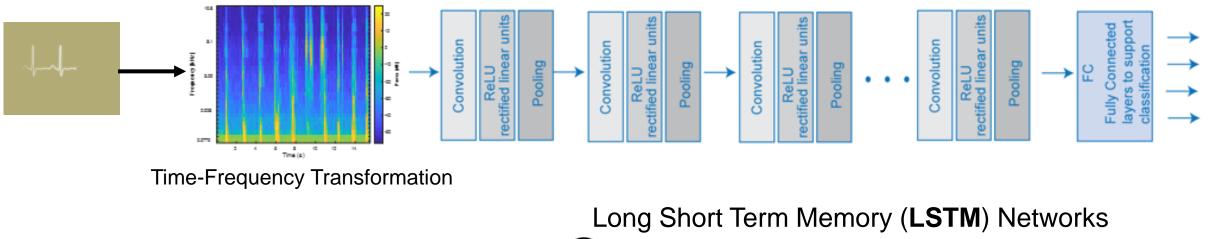
- Deep Learning Basic ideas
- Deep Learning Model Development for Signals, Time Series, and Text
- Conclusions

What is Deep Learning?

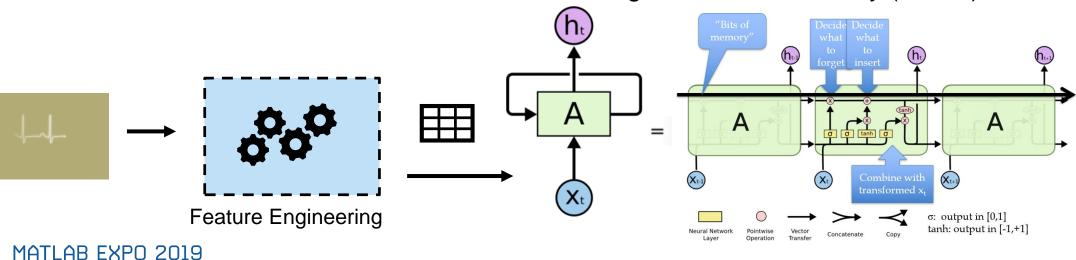
Deep learning is a type of machine learning in which a model learns from examples.



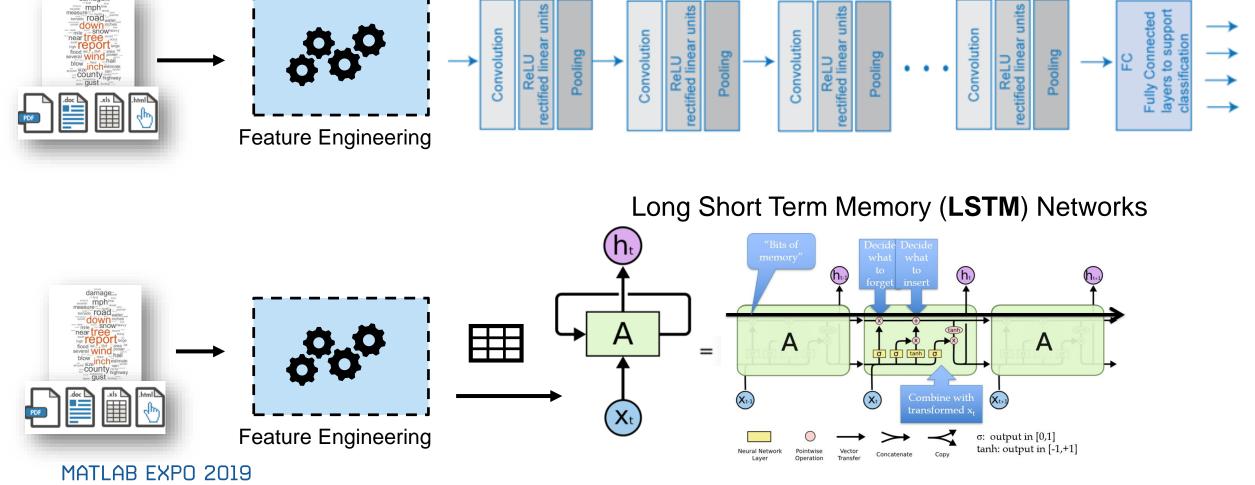
Common Network Architectures - Signal Processing



Convolutional Neural Networks (CNN)



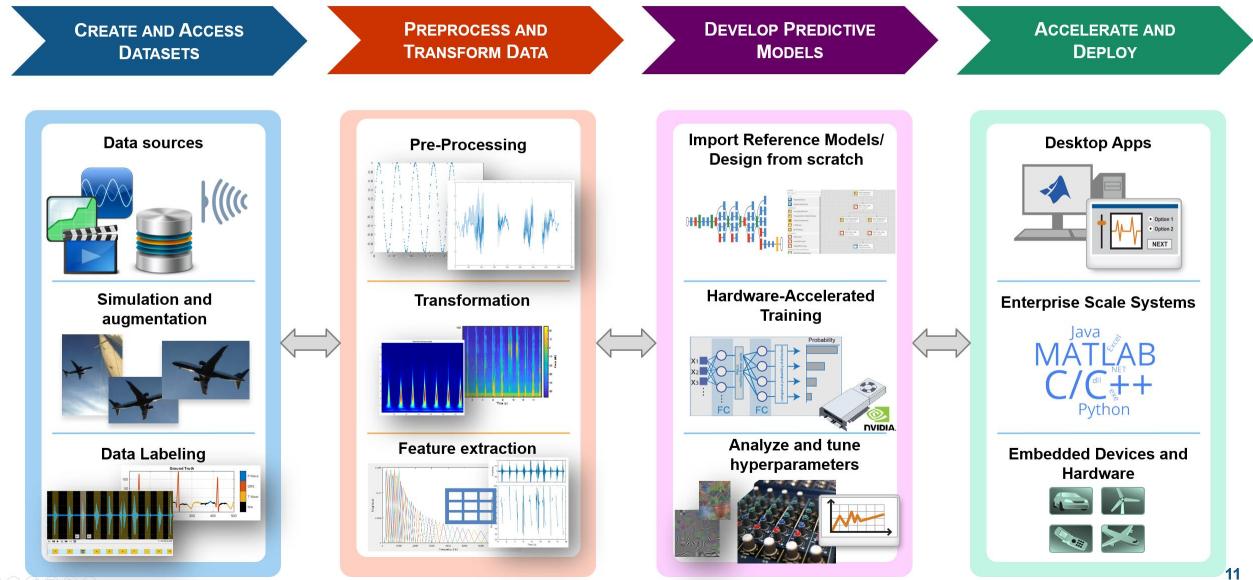
Common Network Architectures – Text Analytics



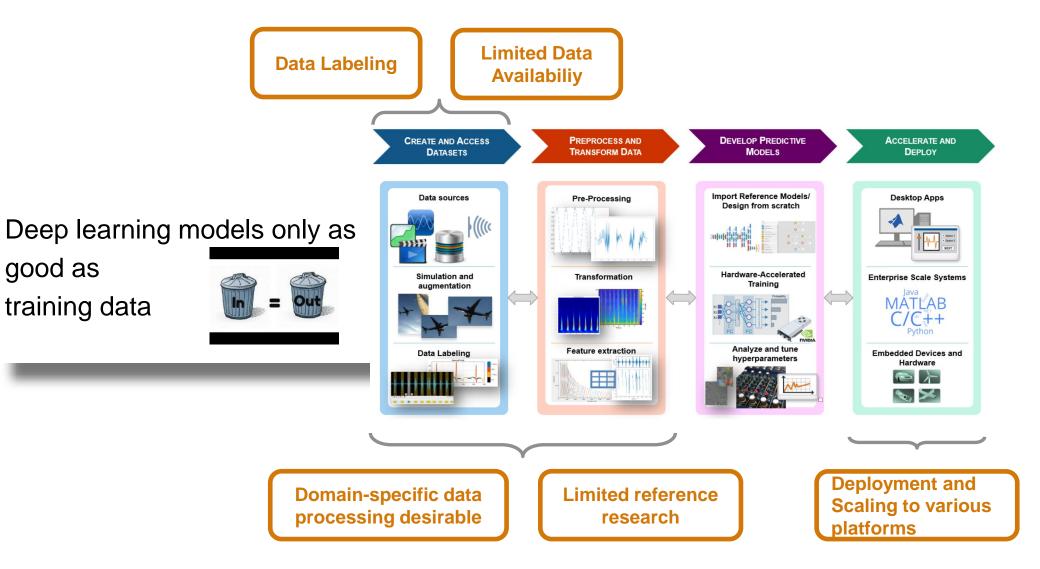
Convolutional Neural Networks (CNN)

10

Deep Learning Workflow



Deep Learning Workflow Challenges – Signals and Time Series



Agenda

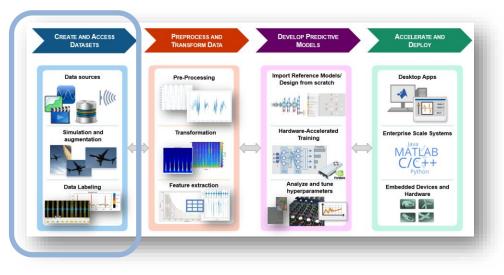
- Deep Learning Basic ideas
- Deep Learning Model Development for Signals, Time Series, and Text
 - Data
 - Processing and transformation
 - Model design and optimization
 - Acceleration, prototyping, and deployment
- CREATE AND ACCESS DATASETS
 PREPROCESS AND TRANSFORM DATA
 DEVELOP PREDICTVE MODELS
 ACCELERATE AND DEPLOY

 Data sources
 Import Reference Models/ Design from scratch
 Impo

Conclusions

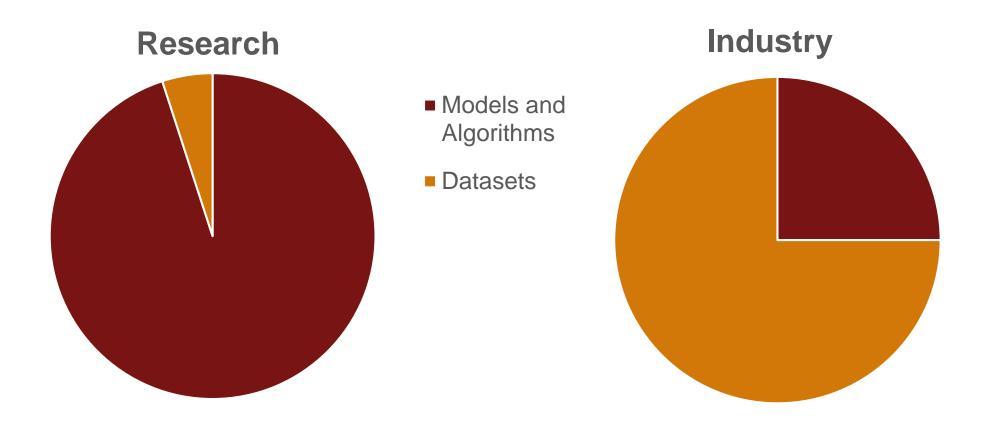
Agenda

- Deep Learning Basic ideas
- Deep Learning Model Development for Signals, Time Series, and Text
 - Data
 - Processing and transformation
 - Model design and optimization
 - Acceleration, prototyping, and deployment



Conclusions

Current Investments – Models vs. Data



From "Troubleshooting deep neural networks" (Josh Tobin et al., Jan 2019)

What does a large dataset look

How to navigate, index, read (al

📣 Current Folder Name 🔺 Size Folder Dataset _background_noise_ + bed + bird + cat + dog + down + eight + five + four + go + happy + house + left + marvin + nine + no + off + on + one + right + seven + sheila + SIX + stop Details

MATI AB FXPO 2019

How to...

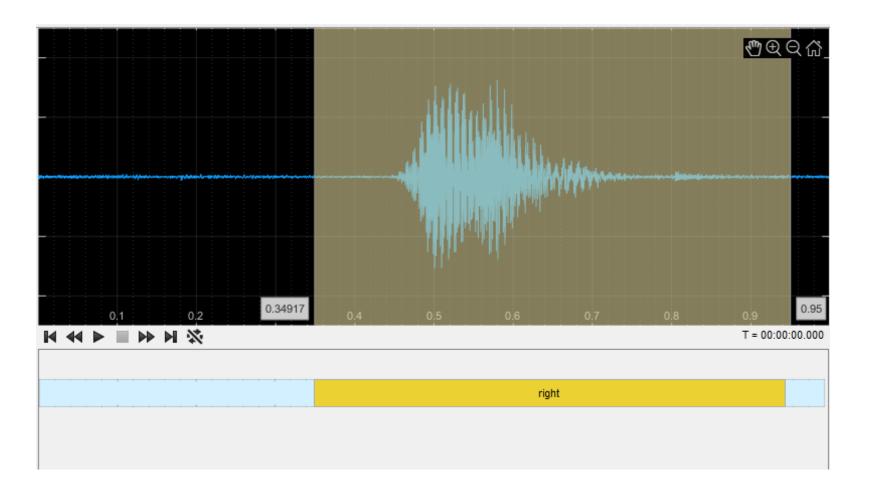
- Build a list of all data and labels?
- Review basic statistics about available data?

fileDatastore

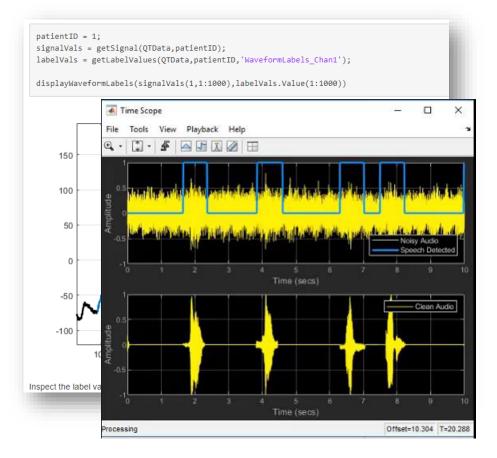
- Select data subsets without nested for loops, dir, ls, what, ... aplenty?
- Jointly read data and labels?
- Automatically distribute computations?

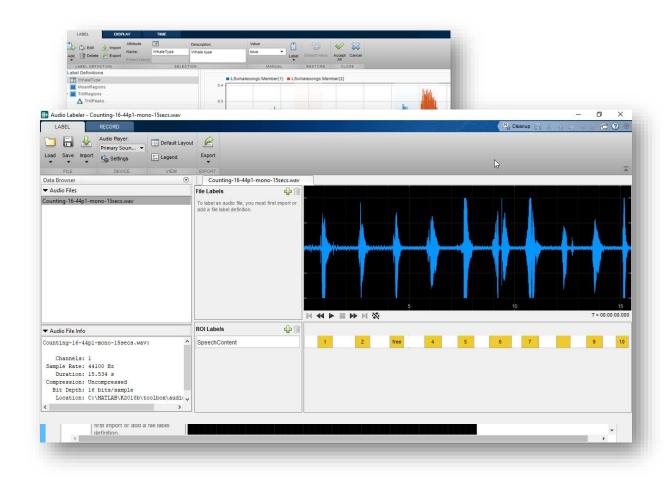
Custom Datastores

Label quality impacts model performance as much as the quality and quantity of the actual recordings



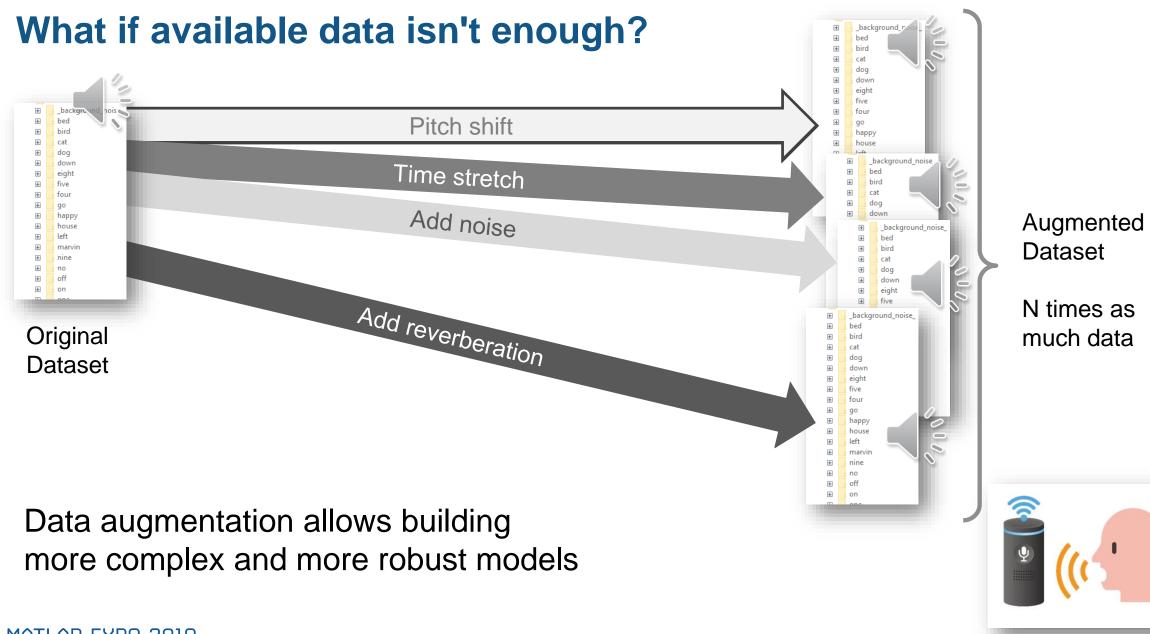
Use appropriate tools to help you label signals





... or via Apps

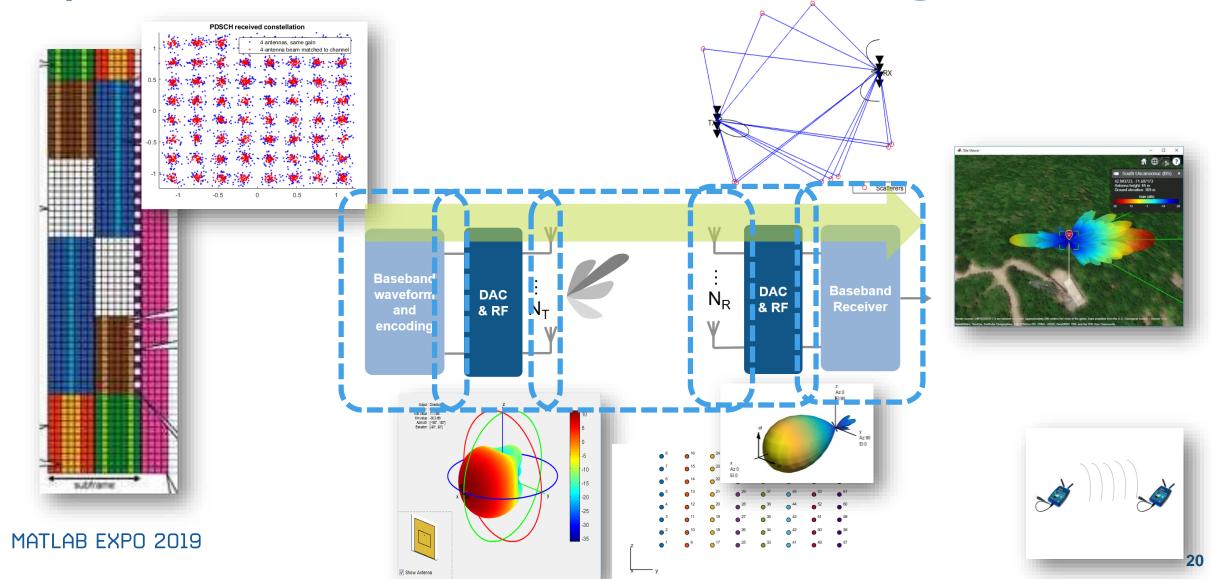
Programmatically...



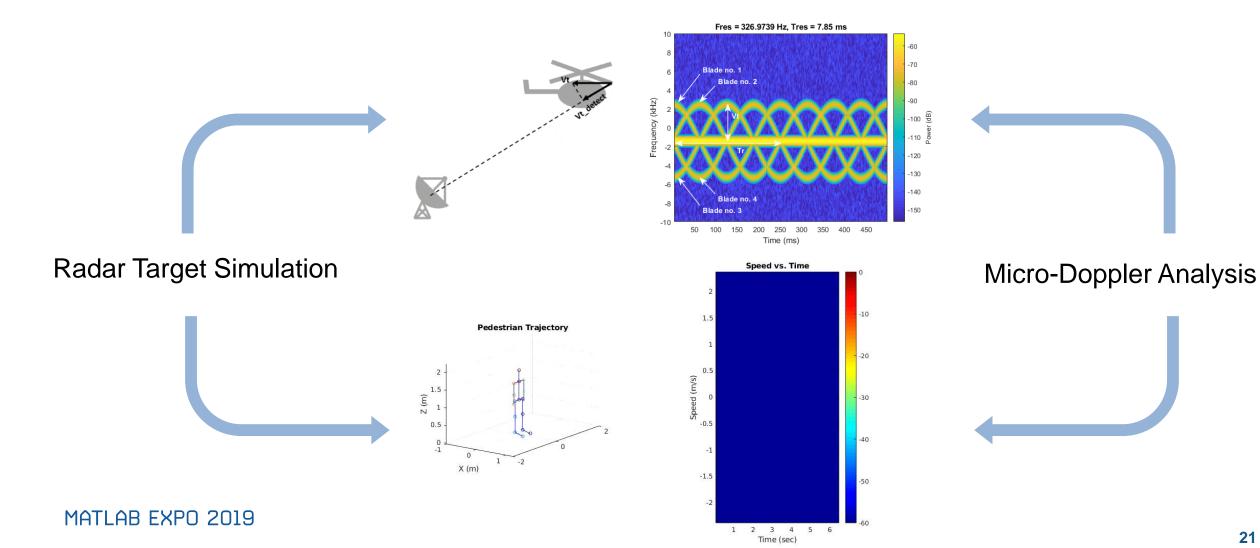
MathWorks[®]

Simulation is key if recording and labelling real-world data is impractical or unreasonable – Communications Signals

MathWorks[®]

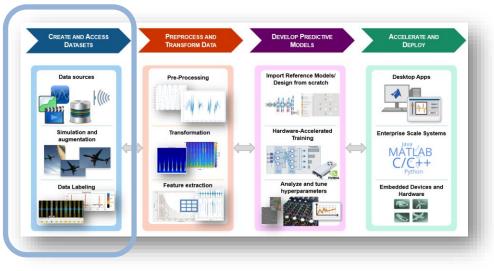


Simulation is key if recording and labelling real-world data is **impractical or unreasonable – Radar Signals**



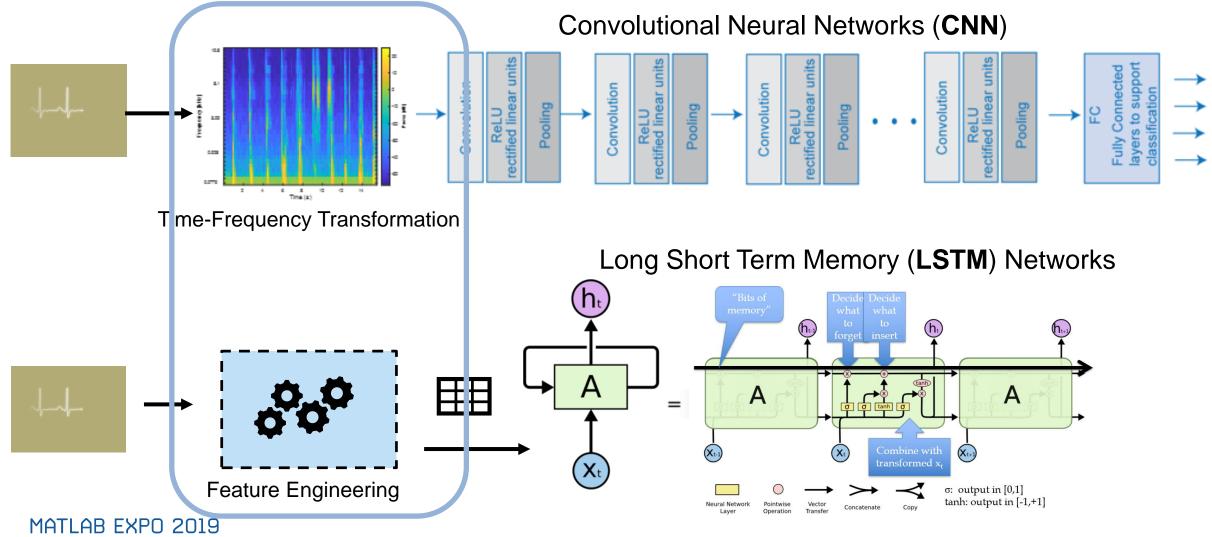
Agenda

- Deep Learning Basic ideas
- Deep Learning Model Development for Signals, Time Series, and Text
 - Data
 - Processing and transformation
 - Model design and optimization
 - Acceleration, prototyping, and deployment

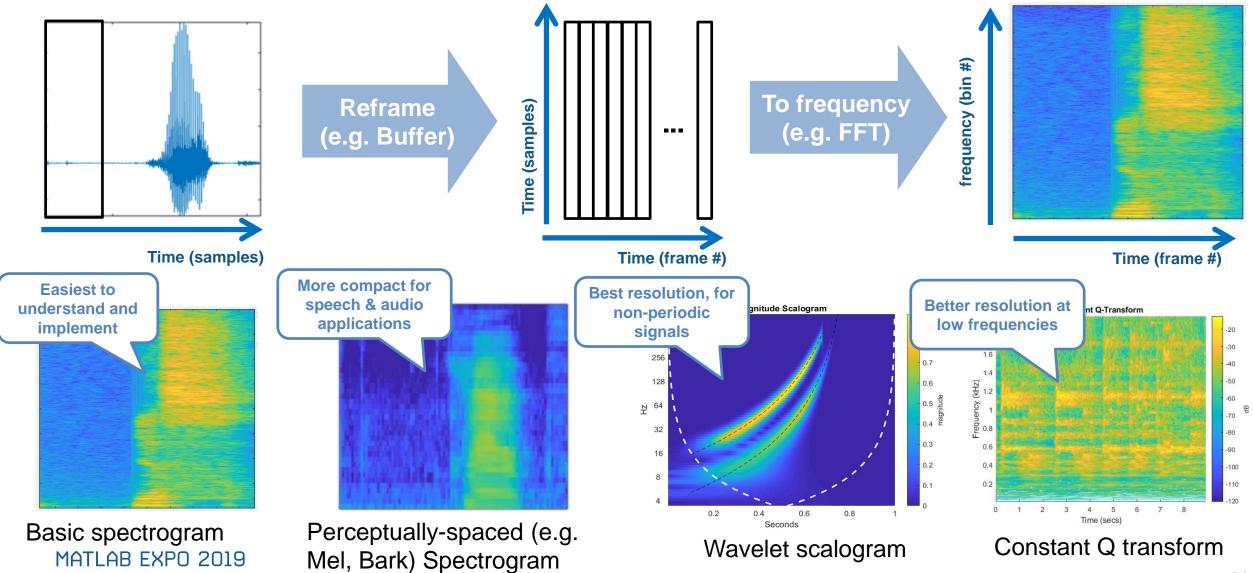


Conclusions

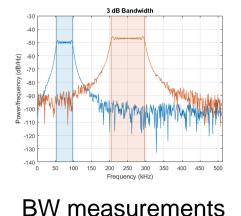
Common types of network architectures used in signal processing and text analytics applications

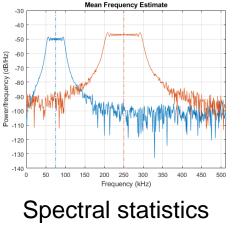


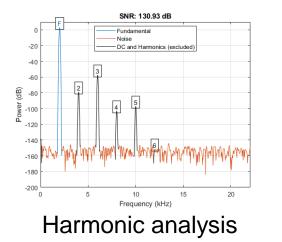
Time-Frequency Transformations

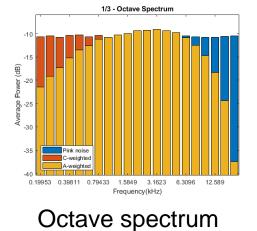


Extracting Features from Signals: Application-Agnostic Examples





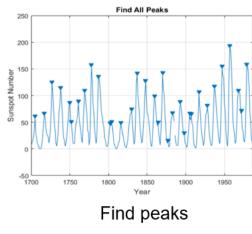




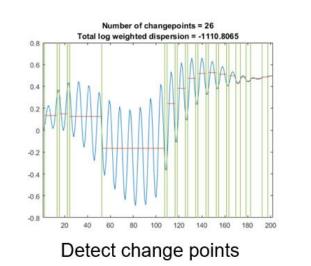
MathWorks[®]

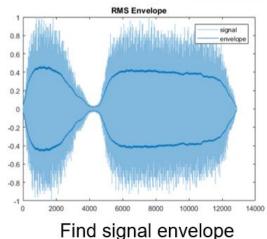
Frequency domain

Time domain



Find signal patterns





Domain-Specific Features and Transformations – Examples

Speech and Audio

- MFCC
- GTCC
- MDCT
- Pitch, harmonicity
- Spectral shape descriptors
- . . .

Navigation and Sensor Fusion

- Orientation
- Height from
- Position

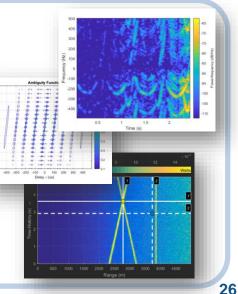
. . .

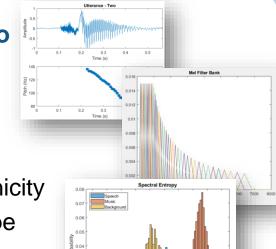
- Multi-object tracking
- Magnetic field
- Acceleration, angular velocity
 - Orientation Estimated GPS reading T23,P07 T07,P04 108.P05

Radar

- Micro-Doppler analysis
- Range-Doppler processing
- Synthetic aperture imaging
- Spectral analysis
- Waveform ambiguity

. . .





0.2 0.3 0.4 0.5 0.6 0.7 0.8

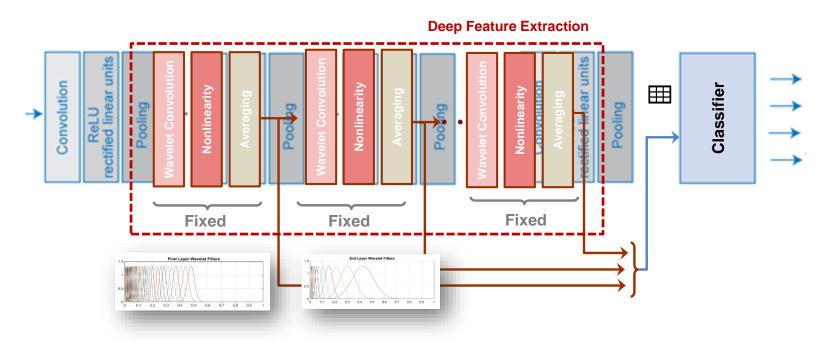
Dr Ver hat his take Way top

Text Analytics

- Train Word Embeddings
- Word2Vec
- Topic Modeling

. . .

Automated Feature Extraction: Wavelet Scattering



- Can relieve requirements on amount of data and model complexity
 - Featured in leader-boards a number of research competitions
- Framework for extracting features ^[1]

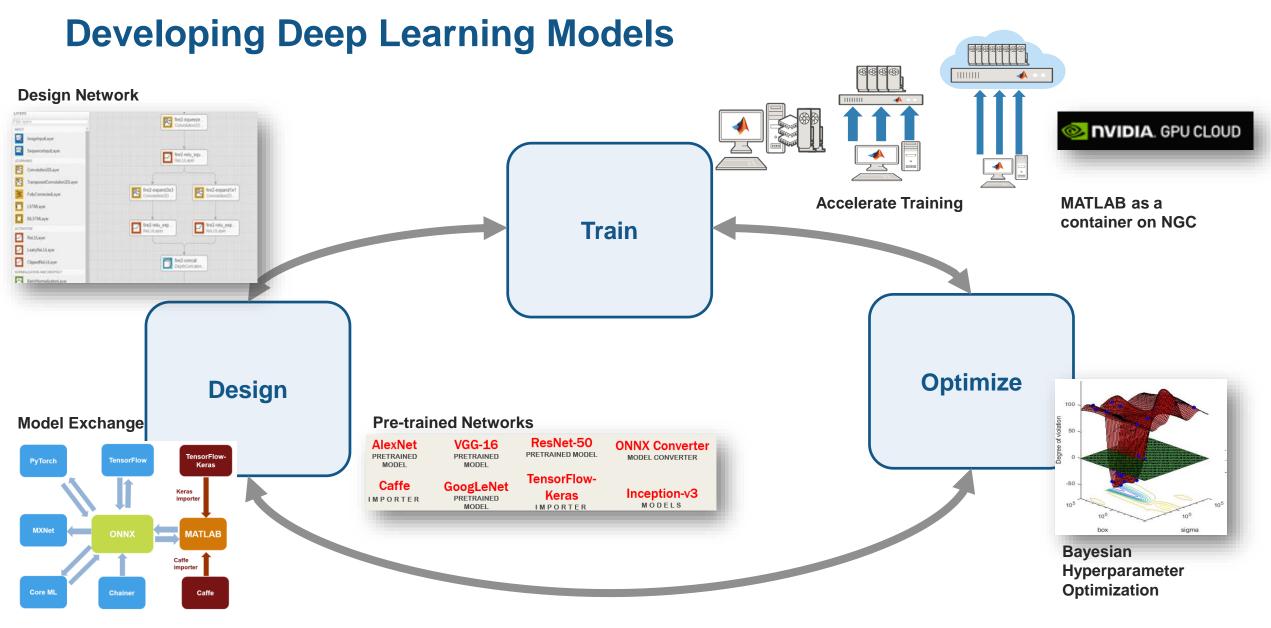
^[1] Joan Bruna, and Stephane Mallat, P. 2013. Invariant Scattering Convolution Networks. <u>IEEE Transactions on Pattern Analysis</u> <u>and Machine Intelligence</u>, Vol. 35, No. 8, pp. 1872-1886.

Agenda

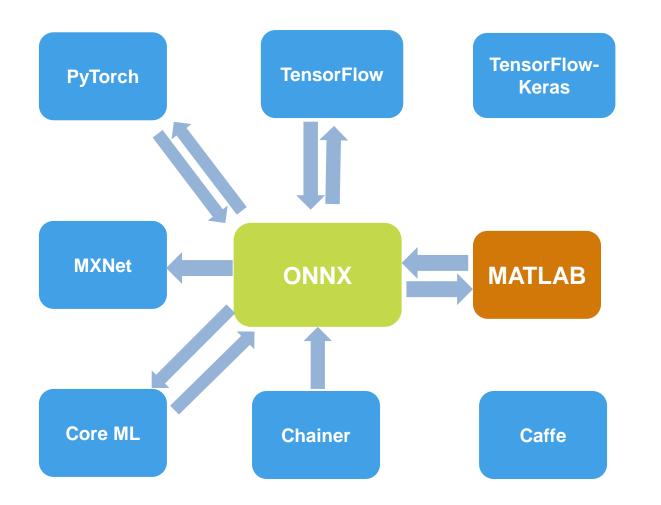


- Deep Learning Basic ideas
- Deep Learning Model Development for Signals, Time Series, and Text
 - Data
 - Processing and transformation
 - Model design and optimization
 - Acceleration, prototyping, and deployment
- CREATE AND ACCESS PREPROCESS AND TRANSFORM DATA DEVELOP PREDICTIV ACCELERATE AND DATASETS DEPLOY MODELS moort Reference Model Pre-Processing Design from scratch MATI AB C/C++Feature extraction Embedded Devices an \sim ×

Conclusions

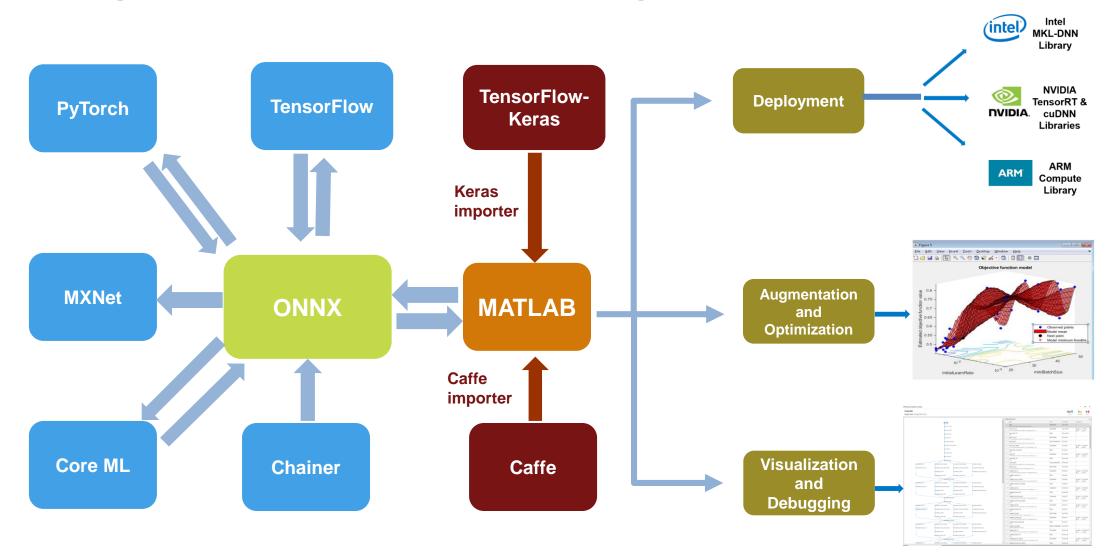


Exchange Models With Deep Learning Frameworks



ONNX = Open Neural Network Exchange Format

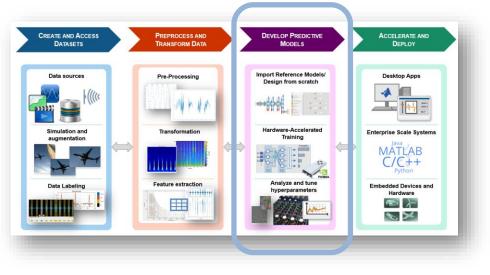
Exchange Models With Deep Learning Frameworks



ONNX = Open Neural Network Exchange Format

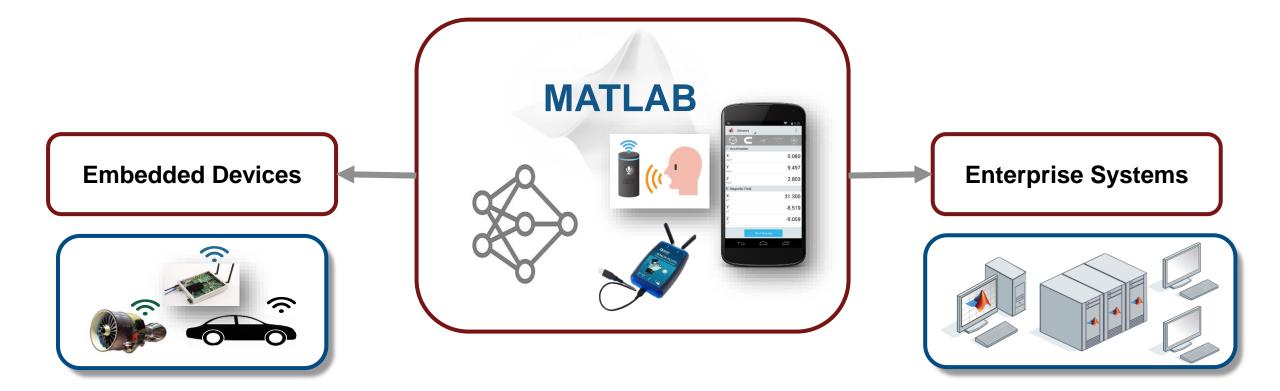
Agenda

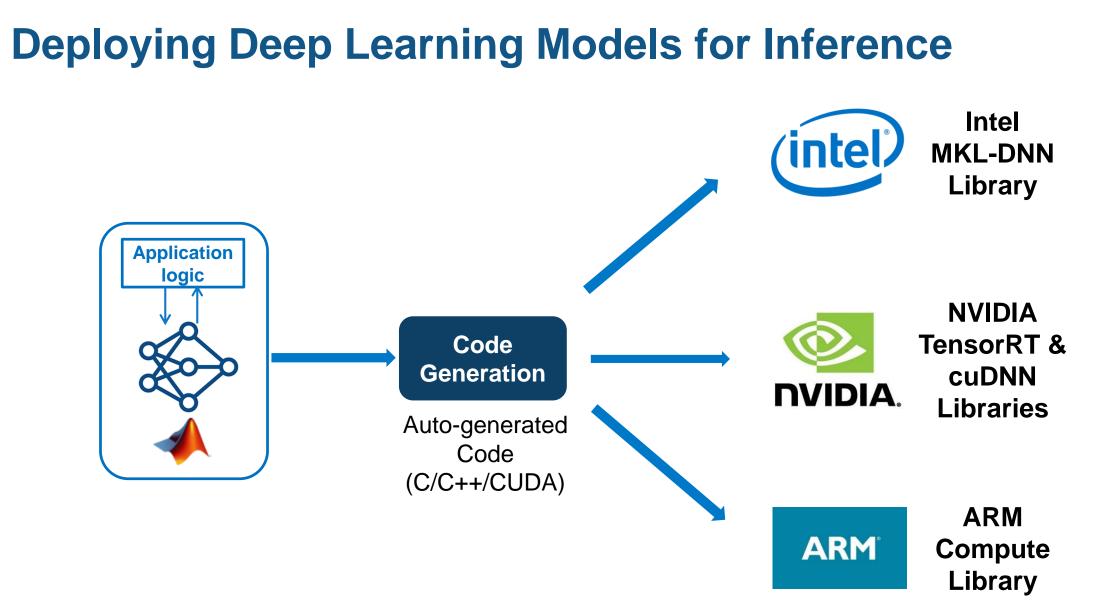
- Deep Learning Basic ideas
- Deep Learning Model Development for Signals, Time Series, and Text
 - Data
 - Processing and transformation
 - Model design and optimization
 - Acceleration, prototyping, and deployment



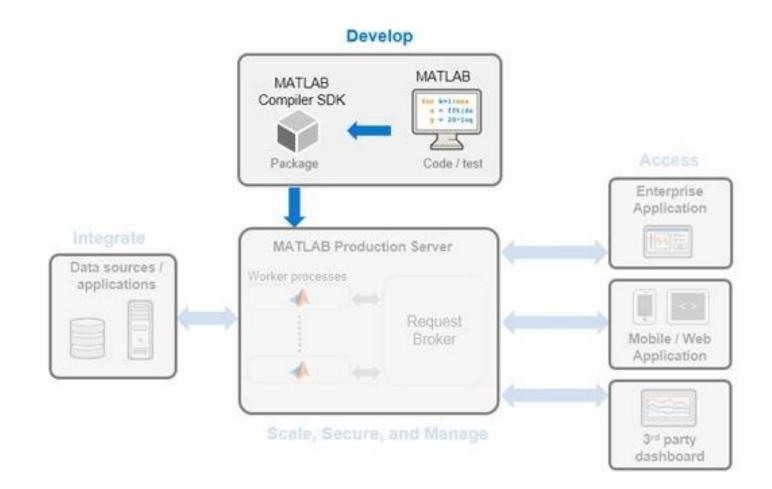
Conclusions

Deployment and Scaling for A.I.





Enterprise Deployment

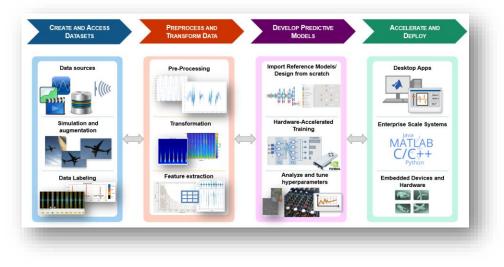


Deployment to the cloud with MATLAB Compiler and MATLAB Production Server

Agenda

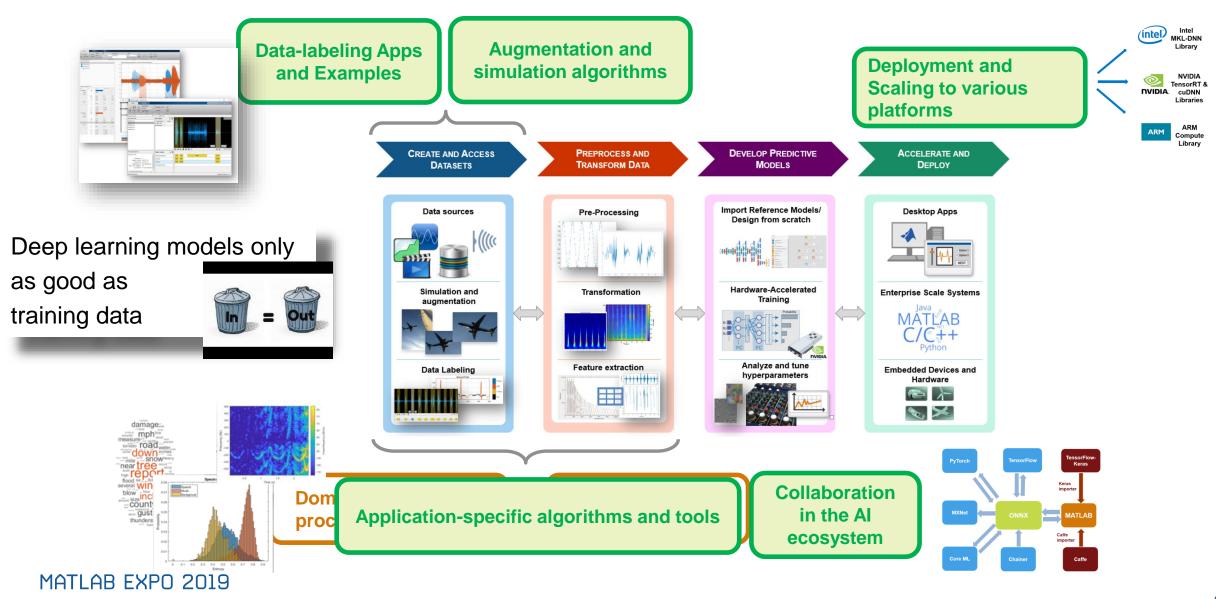


- Deep Learning Basic ideas
- Deep Learning Model Development for Signals, Time Series, and Text
 - Data
 - Processing and transformation
 - Model design and optimization
 - Acceleration, prototyping, and deployment



Conclusions

Deep Learning Workflow Challenges – Signals and Time Series



Domain-Specific Features and Transformations – Examples

Audio

Speech Command Recognition Voice Activity Detection in Noise Denoise Speech Classify Gender

Signal

Music Genre Classification Human Activity Recognition ECG Signal Classification Waveform Segmentation Time-Series and Text <u>Classify Time Series Using Wavelet Analysis</u> <u>Sequence-to-Sequence Classification</u> <u>Classify Text Data Using LSTMs</u> <u>Classify Text Data Using CNNs</u>

Comms and Radar Radar Waveform Classification Modulation Classification

What next?

- Deep Learning Onramp
- Other talks:
 - Pixels to Features to Models
 - Automated Driving System Design
- Demo stands:
 - Deep Learning and Reinforcement Learning
 - Driverless Science Museum exhibition stand
- Application Engineer support

Back up

Summary - Deep learning workflow in MATLAB

