MATLAB EXPO 2019

Introduction to Simulink and Stateflow

Tim Johns
Talks earlier today

Our Journey Towards Model-Based Product Lines
Rolls-Royce

Controlling Complexity at McLaren Automotive with Model-Based Design
McLaren Automotive
Topics

1. Why model a system?
2. Why use Simulink?
3. Simulink and Stateflow basics with a worked example
Why model a system?
Modelling & simulation gives you insight
Application areas
- Hydraulic pressures and flows
- Control systems
- Heat dissipation
- Suspension motion
What is Simulink?
What is Simulink?

1. Graphical programming language
2. Solve time-domain problems
Why use Simulink?
Why use Simulink?

1. Integrated environment
2. Requirements to C code
3. Automate & analyse with MATLAB
Model Based Design with Simulink

- Modelling and simulation
 - Multi-domain dynamic systems
 - Nonlinear systems
 - Continuous-time, discrete-time, multi-rate systems

- Plant and Controller Design
 - Select/optimise control architecture and parameters
 - Rapidly model “what-if” scenarios
 - Communicate design ideas
 - Embody performance specifications

- Implementation
 - Automatic code generation
 - Embedded systems, FPGAs, GPUs
 - Rapid prototyping for SIL, PIL, HIL
 - Verification and validation
Modelling systems

First Principles Modelling

- Hand Calculations
- Simulink
- Simscape
- Parameter Estimation

Data-Driven Modelling

- System Identification
- Machine Learning
- Deep Learning

MATLAB EXPO 2019
Optimise System-Level Performance

- Simulating plant and controller in one environment allows you to
 - Study closed-loop behaviour
 - Optimise system-level performance.
 - Automate tuning process using optimisation algorithms
 - Accelerate process using parallel computing
Detect Integration Issues Earlier

- Controls engineers and domain specialists can work together to **detect integration issues in simulation**
 - Convert plant models to C code for hardware-in-the-loop tests
 - Share models with other internal users
 - Share models with external users while protecting IP
Using Simulink
Hi Tim

We’re adding an electric camera gimbal to our quadcopter. We need to understand how the motors will behave. We also need to develop a control system. Can you help?

Thanks

Bill
Closed-loop motor control

![Image of a motor control system](image)

Commanded and Measured Rotor Speeds

- Speed Command
- Measured Speed

Measured Rotor Speed During Startup

- Motor On
- Closed Loop Velocity Control

MATLAB EXPO 2019
What questions might we want to answer?

1. Can I get the closed-loop response I need?
2. What current will my motor draw during operation?
3. Does my system still work if component values change?
4. What if…?
Steps in the process

1. Model the motor & speed controller
2. Refine the motor model using measured data
3. Model the supervisory logic
4. Deploy the control model to hardware

At each stage *simulate the model*
PID Control of a DC Motor

\[V = K \cdot \omega + i \cdot R + L \frac{di}{dt} \]

\[\Rightarrow i = \frac{1}{L} \int (V - K \cdot \omega - i \cdot R)dt \]

\[-T = K \cdot i - b \cdot \omega - J \frac{d\omega}{dt} \]

\[\Rightarrow \omega = \frac{1}{J} \int (T + K \cdot i - b \cdot \omega)dt \]
Modelling the electrical system

\[i = \frac{1}{L} \int (V - K \cdot \omega - i \cdot R) \, dt \]
Steps in the process

✓ Model the motor & speed controller
2. Refine the motor model using measured data
3. Model the supervisory logic
4. Deploy the control model to hardware

At each stage **simulate the model**
Modelling systems

First Principles Modelling

- Hand Calculations
- Simulink
- Simscape

Parameter Estimation
System Identification

Data-Driven Modelling

- Machine Learning
- Deep Learning

MATLAB EXPO 2019
What is Simscape?

- Multi-domain physical modeling (acausal)
- Work with components, not equations
- Models reflect structure of physical system
Simulink vs Simscape

Diagram

Mass-spring-damper

Equation

\[m\ddot{y} + b\dot{y} + ky = 0 \]

Diagram

RLC circuits

Equation

\[L\dddot{q} + R\ddot{q} + \frac{1}{C}q = V_{in} \]
Simulink

\[L\ddot{q} + R\dot{q} + \frac{1}{C} q = V_{in} \]

\[\ddot{q} = \frac{1}{L} \left(V_{in} - R\dot{q} - \frac{q}{C} \right) \]

Connections represent signal transmissions

Simscape

Connections represent physical connections
Simscape Products

- Actuators
- Semiconductors
- Motors & generators
- Transformers

- Gears, belts
- Tyres, engines
- Clutches
- Transmissions

- 3D Dynamics
- Kinematics
- Force Analysis
- CAD Import

- Hydraulic actuation
- Heating and cooling
- Fluid transportation
- Fluid power
Steps in the process

✓ Model the motor & speed controller
2. Refine the motor model using measured data
3. Model the supervisory logic
4. Deploy the control model to hardware

At each stage simulate the model
Hi Tim

I tried to run the motor model you sent, but the outputs didn’t match up at all with the motor in our lab. Please can you send a model that’s more useful!

Thanks

Bill
Estimating parameters using measured data

Problem: Simulation results do not match measured data

Solution: Use Simulink Design Optimization to automatically tune model parameters

Model:

- DC Motor
- Motor Servoamplifier

- R = Resistance
- L = Inductance
- J = Inertia
- B = Friction
- K = Back EMF Constant

Motor Speed

- Measured
- Simulation

MATLAB EXPO 2019
Steps in the process

✓ Model the motor & speed controller
✓ Refine the motor model using measured data
3. Model the supervisory logic
4. Deploy the control model to hardware

At each stage simulate the model
Hi Tim

When the system is turned on, the motor could be in any position. Could you add a calibration step so that it always starts in the same place?

Thanks,

Bill
System Overview

Upstream Processing

Velocity demand

Motor Velocity Controller

Motor commands

Velocity measurements
System Overview

- Upstream Processing
 - Velocity demand
- Supervisory Logic
 - Safety
 - Modes
 - Smoothing
- Motor Velocity Controller
 - Velocity command
- Motor
 - Motor commands
 - Velocity measurements
Supervisory logic

- Receive input:
 - velocityDemand: demanded motor speed

- Send three outputs:
 - motorOn: whether motor should be enabled or not
 - commandType: current operating mode
 - velocityCommand: demanded motor speed

- When motor is enabled, run required motor calibration steps:
 - Set mode to calibration
 - Run at 25 rad/s for 1 second
 - Stop motor for 1 seconds
 - Set mode to velocity control

How can we implement this?
Stateflow

- State machines and flow charts
- Combine control, supervisory, and mode logic
From: Bill
To: Tim
Subject: URGENT: Unexpected motor controller behaviour

Hi Tim

While testing out the motor control algorithms today, the motor suddenly slowed down before spinning back to its demanded speed. Please can you look into it asap and send us an updated algorithm.

Thanks
Bill
Supervisory Logic

- Receive input
- Send outputs
- Run required motor calibration steps
- Sanitise the input demand to ensure smooth operation of motor
Supervisory Logic

Initialisation

Start

Speed demand constant

Change in velocityDemand

velocityDemand quickly reverts to previous value

New speed demand reached

Speed demand changed

How can we implement this?
From: Bill
To: Tim
Subject: URGENT: New motor speed requirement

Hi Tim

We’ve just heard from the motor supplier that there’s a potential design issue if the motor speed changes too quickly. Please can you change the supervisory logic to avoid us running into this problem.

Thanks,

Bill
Supervisory Logic

- Receive input
- Send outputs
- Run required motor calibration steps
- Sanitise the input demands to ensure smooth operation of motor
- Safely transition between large changes in input demands
Supervisory Logic

How can we implement this?
Steps in the process

✓ Model the motor & speed controller
✓ Refine the motor model using measured data
✓ Model the supervisory logic
4. Deploy the control model to hardware

At each stage simulate the model
Steps in the process

✓ Model the motor & speed controller
✓ Refine the motor model using measured data
✓ Model the supervisory logic
✓ Deploy the control model to hardware

At each stage **simulate the model**
Hi Tim,

Thanks for all your hard work on this project, the customer has just signed it off! We’ve made great progress and I look forward to working with you again.

Bill
Thanks Bill. Why don’t you try the free Simulink Onramp training so that you can do it yourself next time? Or there’s a 2 day training course in Cambridge in December!

Tim
Conclusions

1. Modelling and simulation give you **insight** to:
 - Make **smarter decisions**
 - Make them **earlier**

2. **Simulink** allows you to model the **complete system** in a **single environment**
Embraer Speeds Requirements Engineering and Prototyping of Legacy 500 Flight Control System

Challenge
Accelerate development of the flight control system software for the Legacy 500 midsized business jet

Solution
Use Simulink to model the system and the aircraft dynamics, run requirements-based test simulations, and speed the delivery of mature, internally validated software requirements

Results
- Development time reduced by at least 6 months
- Delays due to requirements issues minimised
- Models reused for real-time testing

“Modeling with Simulink is instrumental to our team’s ARP 4754 work, specifically validating system-level requirements, developing requirements-based tests, and defining low-level software requirements that our supplier uses to produce DO-178 Level A flight code using Simulink and Embedded Coder.”
- Rodrigo Fontes Souto, Embraer

Link to user story
MATLAB EXPO 2019
Virgin Orbit Simulates LauncherOne Stage Separation Events

Challenge

Simulate separation events for LauncherOne spacecraft to ensure sufficient clearance between separating structures.

Solution

Use MATLAB, Simulink, and Simscape Multibody to model structural components, automate Monte Carlo simulations, and analyse and visualize results.

Results

- Simulations completed 10 times faster
- Simulation set up times cut by up to 90%
- Hardware designs informed by simulation results

MATLAB EXPO 2019

“MATLAB and Simulink saved us about 90% on costs compared with the alternative we considered while giving us the coding flexibility to develop our own modules and fully understand the assumptions being made, which is essential when reporting results to other teams.”

- Patrick Harvey, Virgin Orbit
Bombardier Transportation Implements Model-Based Design to Accelerate Rail Propulsion System Development

Challenge
Reduce embedded control software lead times for rail propulsion systems

Solution
Use Model-Based Design to validate requirements, verify designs, and generate production code for embedded targets

Results
- Costs reduced by 45%, lead time by 35%
- Adoption of new workflow streamlined
- Code implementation delays minimised

“Our Simulink models serve as a single, cohesive source of our design—including documentation and implementation—which lowers costs and makes changes easier to implement. As we add more automated tests, we reduce certification costs, as well.”
- Claes Lindskog, Bombardier Transportation

Link to user story
MATLAB EXPO 2019
What next?

Simulink Onramp
- Free!
- 2.5 hours
- Self-paced online

Simulink for System and Algorithm Modelling
- 2 days
- Instructor-led
- Next runs in Cambridge in December