MATLAB EXPO 2019

Developing Fit-for-Purpose Simscape[™] Models to Support System and Control Design

Rick Hyde

A MathWorks®

Overview

- Matching engineering design tasks to models
- Examples
 - Hybrid vehicle powertrain with focus on need for multiple models
 - Photovoltaic system with focus on plant design and control
- Tutorial faulted DC motor

Models must be matched to the engineering design task

Design task: Predict & optimize system performance

Model requirements:

- Faster than real-time for drive cycle analysis
- Component efficiency information as function of operating point

Models must be matched to the engineering design task

Design task: Assess a disruptive/novel actuation technology

Model requirements:

- Torque-speed characteristics
- Linearizable->frequency response
- Predict losses and heat
- Assess failure modes

Models must be matched to the engineering design task

Design task: control system design

Model requirements:

- Linearizable
- Include relevant dynamics
- Key tolerances & uncertainties defined
- Physics readily understandable (no black boxes)

📣 MathWorks[.]

Models must be matched to the engineering design task

Design task: reliability assessment

Model requirements:

- Operating limits
- Tolerances
- Fault behaviours
- Behavioural fault triggering

MathWorks is committed to supporting diverse modelling requirements

Overview

• Matching models to engineering design tasks

Examples

- Hybrid vehicle powertrain with focus on need for multiple models
- Photovoltaic system with focus on plant design and control
- Tutorial faulted DC motor

MATLAB EXPO 2019

Architecture selection

- Compare series, parallel and power-split
- Re-use same set of subsystems (battery, motor, engine etc)
- i.e. an *architecturally reconfigurable* model
- Enabled by Simscape™ physical connections

MathWorks[®] Hybrid vehicle powertrain example **DC-DC Converter** Power-split 1.Trade-off Datasheet-driven blocks from Simscape Electrical[™] studies/select architecture Losses Dynamics Faults Main Percentage efficiency at 96 rated output power: **DC-DC Converter** Optimize Μ Fixed converter losses 100 W independent of loading: C selected d architecture R D 3. Detailed Ρ ra component Bidirectional power flow Power direction: design Maximum expected 200 А supply-side current: 4. Design idatior

Hyb	rid vehicle	powertrain example	MathWorks
PMS	M Motor and	PMSM Generator	Battery DC-DC Vehicle Body Converter Power-split
• Da	atasheet-driver	1.Trade-off	
	architecture		
	Parameterize losses by:	Single efficiency measurement	2. Optimize selected architecture
Electr	Motor and driver overall efficiency (percent):	94	
Paran	Speed at which efficiency is measured:	2800 rpm ~	3. Detailed
Maxin Maxin	Torque at which efficiency is measured:	100 N*m ~	component design
Torqu	e control time constant, Tc:	0.1 s ~	
			4. Design validation

Vehicle and Drive Cycle

System-level blocks from Simscape Driveline[™]

	Main Drag Pitch V	ariables	
→v ⊊ ¥	Frontal area:	3	m^2 ~
Deta	Drag coefficient:	0.4	
V A	Air density:	1.18	kg/m^3 ~

Automotive-specific blocks from Powertrain Blockset[™]

Batte	MathWorks MathWorks For the second Power Split Power Split Power Split Power Split Power Split
	1.Trade-off studies/select architecture
_	
	2. Optimize selected architecture
	3. Detailed component design
	4. Design validation

MathWorks[®]

Hybrid vehicle powertrain example

Optimize selected architecture

- Sensitivity of drive cycle efficiency to key design parameters e.g. battery weight
- Direct optimization of key design parameters

Enabled by MATLAB[®] scripting and Optimization and Global Optimization Toolboxes

Battery

Measurement-based blocks from Simscape Electrical[™]

	Main Dynamics Fade Thermal Variables
(Table-Based	Fade characteristics defined Equations
Main	Number of discharge cycles, 400
Vector values Tempo	Change in no-load voltage after N discharge cycles (%):
tables Vector	Change in terminal resistance after N discharge cycles (%):
No-loa V0(SC	Change in ampere-hour rating after N discharge cycles (%):
Termi R0(SC	oli resistance, 008; .039, .012, .006; .027, .013, .021] Ohm ~
Amper AH(T)	e-hour rating, [2.9, 4.1, 4.2] hr*A ~

MATLAB EXPO 2019

MathWorks[®]

Power-split

studies/select

Optimize

architecture

3. Detailed

component

design

4. Design

lidation

selected

1.Trade-off

architecture

PMSM Drives

Three constituent parts

🕇 D1

--

🕇 D5

🕇 D3

- Modelling fidelity must be sufficient to:
 - Predict overall drive efficiency
 - Predict electrical harmonics at DC supply
 - Predict torque ripple applied to load
 - Ensure components stay within operating limits

PMSM Motor

- Magnetic finite element level model required to:
 - Determine flux linkage as function of currents and rotor angle
 - Determine iron losses as function of load and speed
- Import into Simscape using the Simscape Electrical[™] FEM-Parameterized PMSM block (*Design data import from specialist tool*)

	R				
\neg	НА				
HR	Ф нс				
FEM-Parameterized PMSM					

Electrical	Iron Losses	Mechanical Variables	;						
Winding ty	pe:	Wye-wound	Wye-wound 🔹						
Direct-axis iD:	current vector	idVec	A ~						
Quadrature-axis current vector, iQ:		iqVec	Α ~						
Rotor angle	e vector, theta:	xVec	rad ~						
A-phase flu derivative dPhiA(iD,iQ	ux linkage parti wrt iA,),theta)/diA:	dfluxAdiaMatrix		Wb/A ~					
A-phase flu	ıx linkage parti	al							

📣 MathWorks

Simscape Electrical SPICE Import

- Convert SPICE models into Simscape components
 - Command subcircuit2ssc
 - Converts subcircuit definition to a Simscape Language component

testMosfe	etNetlist.txt 🔀 🕂
. FUNC	<pre>Idiode(Usd,Tj,Iss) {exp(min(le</pre>
. FUNC	Idiod(Usd,Tj) {a*Idiode(
. FUNC	Pr(Vss0,Vssp) {Vss0*Vss0/Rm+V
. FUNC	$J1(d,g,T,da,s,x) \{a*(s*(exp(min))\}$
. FUNC	$QCds(x) $ {Cds3*min(x,x1)+Cds0*matrix
TUNC	

Vehicle

- Simscape Multibody™
 - Steering and suspension design
 - Determine torque ripple coupling to steering and chassis

Design validation

- Revise system-level model (*Abstractable to mapped model*)
 - Update drive cycle efficiencies, predicted range etc.
- Validate detailed components deployed in full vehicle simulation
 - Components must stay within permitted operating points (Capture operating limits and apply tolerances)
 - Assess impact of detailed component behaviour at system level (Configurable fidelity)
- HIL and simulator testing
 - Simulink Coder deploys controllers and physical models to hardware (Deployable)
 - Abstraction of chassis if needed using Vehicle Dynamics Blockset[™] (Configurable fidelity)

Overview

• Matching models to engineering design tasks

Examples

- Hybrid vehicle powertrain with focus on need for multiple models
- Photovoltaic system with focus on plant design and control
- Tutorial faulted DC motor

MathWorks is committed to supporting diverse modelling requirements

Overview

• Matching models to engineering design tasks

Examples

- Hybrid vehicle powertrain with focus on need for multiple models
- Photovoltaic system with focus on plant design and control
- Tutorial faulted DC motor

A MathWorks*

Photovoltaic generator

- Task: Assess/check stability margins
- Solution #1: Linearize and view Bode plot using Simulink Control Design
- **Solution #2**: Run a frequency-response identification exercise

A MathWorks

Photovoltaic generator

Solution #1: Linearize and view Bode plot using Simulink Control Design

- 1. Remove switching
 - Simscape Electrical average-value converters
- 2. Add linearization I/O
 - Simulink Control Design analysis points
- 3. Define operating point
 - Simulate to desired operating point
- 4. Linearize
 - Launch Simulink Control
 Design UI

MathWorks[®]

Remove switching

Simscape Electrical

Add linearization I/O

average-value converters

Simulink Control Design

Launch Simulink Control

linear analysis points

Define operating point

Simulate to desired

operating point

Design UI

Photovoltaic generator

Solution #1: Linearize and view Bode plot using Simulink Control Design

A MathWorks

Photovoltaic generator

Solution #1: Linearize and view Bode plot using Simulink Control Design

^{1.} Remove switching

- Simscape Electrical average-value converters
- 2. Add linearization I/O
 - Simulink Control Design analysis points
- 3. Define operating point
 - Simulate to desired operating point
- 4. Linearize
 - Launch Simulink Control
 Design Model Linearizer UI

A MathWorks

Photovoltaic generator

Solution #1: Linearize and view Bode plot using Simulink Control Design

- 1. Remove switching
 - Simscape Electrical average-value converters
- 2. Add linearization I/O
 - Simulink Control Design analysis points
- 3. Define operating point
 - Simulate to desired operating point
- 4. Linearize
 - Launch Simulink Control
 Design Model Linearizer UI

📣 MathWorks•

Photovoltaic generator

Solution #2: Run a frequency-response identification exercise

- 1. Add a Simulink Control Design *Frequency Response Estimator* block.
- 2. Configure for frequency points and sample time.
- 3. Run the model.

📣 MathWorks

Photovoltaic generator

Solution #2: Run a frequency-response identification exercise

- 1. Add a Simulink Control Design *Frequency Response Estimator* block.
- 2. Configure for frequency points and sample time.
- 3. Run the model.

MathWorks®

Overview

- Matching models to engineering design tasks
- Examples
 - Hybrid vehicle powertrain with focus on need for multiple models
 - Photovoltaic system with focus on plant design and control
- Tutorial faulted DC motor

Inertia

- Requirements
 - Normal behaviour as example ssc_dcmotor
 - Faulted behaviour: one winding open-circuit
- Non-requirements
 - Transients and electrical noise due to brushing

Solution

- Convert DC Motor subsystem to a Simscape component 1.
- Modify the component to be faultable 2.

Convert subsystem to Simscape component

subsystem2ssc Function

💋 С	C:\Users\rhyde\Desktop\EXPO\DC_Motor.ssc* X							
E								
4								
New	Open Save E Compare V Go To V Comment % 🍇 🖏 Breakpoints							
•	🔻 👻 🖶 Print 👻 🔍 Find 👻 Indent 🛐 🛃 🛃 💌							
1	FILE NAVIGATE EDIT BREAKPOINTS							
2	 Subsystem: ssc domotor masked/DC Motor 							
3	Generated on: 17-Sep-2019 13:39:31							
4	component (Propagation = blocks) DC Motor							
5	parameters							
6	<pre>F = {2e-05, 'm*N'}; %Friction torque (Nm)</pre>							
7	<pre>J = {.01, 'cm^2*g'}; %Inertia (g*cm^2)</pre>							
8	<pre>Kt = {.0007, 's*V/rad'}; %Torque constant (Nm/A)</pre>							
9	<pre>L = {1.2e-05, 'H'}; %Armature inductance (H)</pre>							
10	<pre>R = {3.9, 'Ohm'}; %Armature resistance (ohm)</pre>							
11	end							
12	nodes							
13	<pre>C = foundation.mechanical.rotational.rotational;</pre>							
14	<pre>R0 = foundation.mechanical.rotational.rotational;</pre>							
15	<pre>V1 = foundation.electrical.electrical;</pre>							
16	<pre>V0 = foundation.electrical.electrical;</pre>							
17	end							
18	<pre>components(ExternalAccess = observe)</pre>							
19	Rotor_Resistance = foundation.electrical.elements.resistor(R =							
20	Rotor_inductance = foundation.electrical.elements.inductor(r =							
21	Rotational_Electromechanical_Converter = foundation.electrical							
22	Inertia = Ioundation.mechanical.rotational.inertia(inertia = J)							
23	erd							
24	connections							
26	connect (V0.Rotor Resistance.p);							
27	connect (Rotational Electromechanical Converter, p.Rotor Inducta							
28	<pre>connect(V1,Rotational Electromechanical Converter.n);</pre>							
29	<pre>connect(Rotor Inductance.p,Rotor Resistance.n);</pre>							
30	<pre>connect(R0,Friction.R);</pre>							
31	<pre>connect(R0,Inertia.I);</pre>							
32	<pre>connect(R0,Rotational_Electromechanical_Converter.R);</pre>							
33	<pre>connect(C,Friction.C);</pre>							
34	<pre>connect(C,Rotational_Electromechanical_Converter.C);</pre>							
35	end v							
<	>							
	Simscape model file Ln 4 Col 1							

📣 MathWorks

Convert subsystem to Simscape component

parameters

```
F = {2e-05, 'm*N'}; %Friction torque (Nm)
J = {.01, 'cm^2*g'}; %Inertia (g*cm^2)
Kt = {.0007, 's*V/rad'}; %Torque constant (Nm/A)
L = {1.2e-05, 'H'}; %Armature inductance (H)
R = {3.9, 'Ohm'}; %Armature resistance (ohm)
end
```


nodes

- C = foundation.mechanical.rotational.rotational;
- R0 = foundation.mechanical.rotational.rotational;
- V1 = foundation.electrical.electrical;
- V0 = foundation.electrical.electrical;

end

Convert subsystem to Simscape component

MATLAB EXPO 2019

39

OK

Cancel

Help

Apply

Convert subsystem to Simscape component

Use Simscape Component block to instantiate

										,	🚹 Block Parameters: Simscape	Component	×		
🍡 unt	itled * - Simulinl	k						— C	X C		DC Motor				
SIMU	LATION	DEBUG	MODELING	G	FORMA	т	APPS								
FILE LIE	RARY PREPARE	Stop Time 1 Normal	0.0	Step Back 👻 SIMULATI	Run F	Step Forward	Stop	REVIEW RESULTS			Source code DC_Motor OK	Cancel	Help Apply		
•		ea							•		<u>o</u> k	cuncer			
€	➣							⊳►		1	Block Parameters: Simscape Compo	nent			×
N N N			1	<mark>c</mark> Simso	cape						DC_Motor				
⇒ A	f(x) = 0		4 4 4	R0 V1 VDC M	otor						Source code			Choo	ose source
\sim				Compo	onent						Settings				
	Simscap	e Librarv Res	ources								Friction torque (Nm):	20.05		N*m	
	1. Find con	nponents in the	Simscape libra	ary.							Inaction (atom (NIII).	201		N*III a*em∆2	
0	For more 2. Connect	e information, se the components	e <u>Physical Mo</u> to form a phy	odeling - E ysical net	Blocks. work.						Inerua (g*cm ⁺ ⁺ 2):	.01			
	For more 3. Explore	e information, se simulation result	e <u>Essential Si</u> s using <u>sscex</u>	teps for C plore	onstructir	ng a Physica	Model.				Forque constant (Nm/A):	.0007		V/(rad/s)	~
>>											Armature inductance (H):	1.2e-05		H	~
Ready				1(00%			VariableS	tepAuto		Armature resistance (ohm):	3.9		Ohm	~
MA	ATLAB EX	PO 2019													

Convert subsystem to Simscape component

Label and order the ports

Solution

- Convert DC Motor subsystem to a Simscape component 1.
- 2. Modify the component to be faultable

MATLAB EXPO 2019

2.

Modify the custom component to be faultable Requirements & functional design

- Fault behaviour
 - Path seen by brushes goes open circuit for 120 degrees of rotation
- Implementation
 - Represent this with a custom resistor with resistance dependent on rotor angle

Custom resistor	2 C	C:\Program Files\MATLAB\R2019b\toolbox\physmod\simscape\library\m\+foundation\+electric							
	E	EDITOR VIEW							
R2019b	2	$f_{x} = [a]$ Find Files $\langle \Rightarrow \Rightarrow \rangle$ Insert $[b]$ $f_{x} = [c]$							
>> sscnewfile(`FaultableResistor'	New	lew Open Save E Compare ▼ → Go To ▼ Comment % ‰ ‰ Breakpoints							
C:\Users\rhyde\Rick\FaultableResistor.ssc*	•	▼ ▼ → Print ▼ Q Find ▼ Indent 5 + Print ▼							
EDITOR VIEW	1	FILE NAVIGATE EDIT BREAKPOINTS							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	2 % Electrical Branch							
New Open Save Image: Compare Image: Compar	3	8 % Copyright 2005-2013 The MathWorks, Inc.							
FILE NAVIGATE EDIT BREAKPOINTS	4	1 nodes							
1 component FaultableResistor < foundation.electric	5	<pre>5 p = foundation.electrical.electrical; % +:left</pre>							
2 % Resistor	6	6 n = foundation.electrical.electrical; % -:right							
3 * The voltage-current (V-I) relationship for a 11;	7	7 end							
4 % where K is the constant resistance in ords.	8	3 variables							
6 % Copyright 2005-2016 The MathWorks, Inc.	9	<pre>i = { 0, 'A' }; % Current</pre>							
7	10	<pre>v = { 0, 'V' }; % Voltage</pre>							
8 parameters	11	l end							
<pre>9 R = { 1, 'Ohm' }; % Resistance</pre>	12	2 branches							
10 end	13	i : p.i -> n.i;							
11	14	4 end							
12 equations	15	5 equations							
13 assert(R>=0);	16	$\mathbf{v} = \mathbf{p} \cdot \mathbf{v} - \mathbf{n} \cdot \mathbf{v};$							
14 $\mathbf{v} = \mathbf{K}^{\mathbf{L}};$	17	7 end							
16	18	3 end							
17 end		Simscape model file Ln 12 Col 13							
Simscape mode	l file	Ln 5 Col 1 .:							

📣 MathWorks

Custom resistor

MATLAB EXPO 2019

- To do:
 - 1. Add a variable for rotor angle.
 - 2. Add a parameter for faulted resistance.
 - 3. Make resistance a function of rotor angle.
 - 4. Add logic to enable the fault.

47

Custom resistor

14 variables

```
15 rotor_angle = {0, 'deg'}; % Rotor angle
16 end
```

- To do:
 - 1. Add a variable for rotor angle.
 - 2. Add a parameter for faulted resistance.
 - **3.** Make resistance a function of rotor angle.
 - 4. Add logic to enable the fault.

A MathWorks

Custom resistor

8 parameters

9 R = { 1, 'Ohm' }; % Resistance

```
10 Rfaulted = { 1, 'MOhm' }; % Faulted resistance
```

11 end

• To do:

- 1. Add a variable for rotor angle.
- 2. Add a parameter for faulted resistance.
- **3.** Make resistance a function of rotor angle.
- 4. Add logic to enable the fault.

This takes out zero crossings which would cause numeric issues around zero speed.

- 3. Make resistance a function of rotor angle.
- 4. Add logic to enable the fault.

MathWorks[®]

Custom resistor

```
8
    parameters
 9
        R = { 1, 'Ohm' }; % Resistance
        Rfaulted = { 1, 'MOhm' }; % Faulted resistance
10
        tFault = { inf, 's' }; % Time at which to fault
11
12
    end
20
        if time<tFault
            v == R*i;
21
        else
22
23
            let
24
                 open circuit = if gt(sin(rotor angle), sin(pi/6)), 1 else 0 end;
25
            in
                v == (1-open_circuit)*R*i + open_circuit*Rfaulted*i;
26
27
            end
28
        end
                                                        4. Add logic to enable the
                                                            fault.
```

Custom resistor

```
component FaultableResistor < foundation.electrical.branch
 1
    % Resistor
 2
   % The voltage-current (V-I) relationship for a linear resistor is V=I*R,
 3
    % where R is the constant resistance in ohms.
 4
 5
 6
    % Copyright 2005-2016 The MathWorks, Inc.
 7
 8
   parameters
 9
        R = { 1, 'Ohm' }; % Resistance
        Rfaulted = { 1, 'MOhm' }; % Faulted resistance
10
        tFault = { inf, 's' }; % Time at which to fault
11
12
   end
13
14
    variables
15
        rotor angle = {0, 'deg'}; % Rotor angle
16
    end
17
18
    equations
19
        assert(R>=0);
20
        if time<tFault
21
            v == R*i;
22
        else
23
            let
24
                open circuit = if gt(sin(rotor angle),sin(pi/6)), 1 else 0 end;
25
            in
26
                v == (1-open circuit)*R*i + open circuit*Rfaulted*i;
27
            end
28
        end
    end
29
30
31
   end
```

```
MATLAB EXPO 2019
```

52

📣 MathWorks

📣 MathWorks

Integrate custom resistor into custom DC motor

```
components(ExternalAccess = observe)
```

```
Rotor Resistance = foundation.electrical.elements.resistor(R = R);
```

```
components(ExternalAccess = observe)
```

```
Rotor Resistance = FaultableResistor(R = R, Rfaulted=Rfaulted, tFault=tFault);
```

parameters

F = {2e-05, 'm*N'}; %Friction torque (Nm)
J = {.01, 'cm^2*g'}; %Inertia (g*cm^2)
Kt = {.0007, 's*V/rad'}; %Torque constant (Nm/A)
L = {1.2e-05, 'H'}; %Armature inductance (H)
R = {3.9, 'Ohm'}; %Armature resistance (ohm)
Rfaulted = { 1, 'MOhm' }; % Faulted resistance
tFault = { inf, 's' }; % Time at which to fault
end

equations

```
Rotor_Resistance.rotor_angle.der == Inertia.w;
end
```

MATLAB EXPO 2019

To do:

- 1. Replace standard resistor with the faultable resistor.
- 2. Pass faultable resistor parameters to DC motor interface.
- 3. Add an equation that defines rotor angle.
- 4. Create a test harness and validate.

MathWorks®

Faultable DC Motor – Test Harness

- Test:
 - Drive motor at fixed 5rpm
 - Measure torque

MathWorks®

Summary

- Matching models to engineering design tasks
- Examples
 - Hybrid vehicle powertrain with focus on need for multiple models
 - Photovoltaic system with focus on plant design and control
- Tutorial faulted DC motor

How to find out more

- MathWorks physical modelling page:
 - <u>https://www.mathworks.com/solutions/physical-modeling.html</u>
- Steve Miller's introduction video
 - <u>https://www.mathworks.com/videos/physical-modeling-introduction-75883.html</u>
- MATLAB Central File Exchange
 - <u>https://www.mathworks.com/matlabcentral/fileexchange/</u>
- Hybrid vehicle example:
 - <u>https://uk.mathworks.com/matlabcentral/fileexchange/28441-hybrid-electric-vehicle-model-in-simulink</u>

