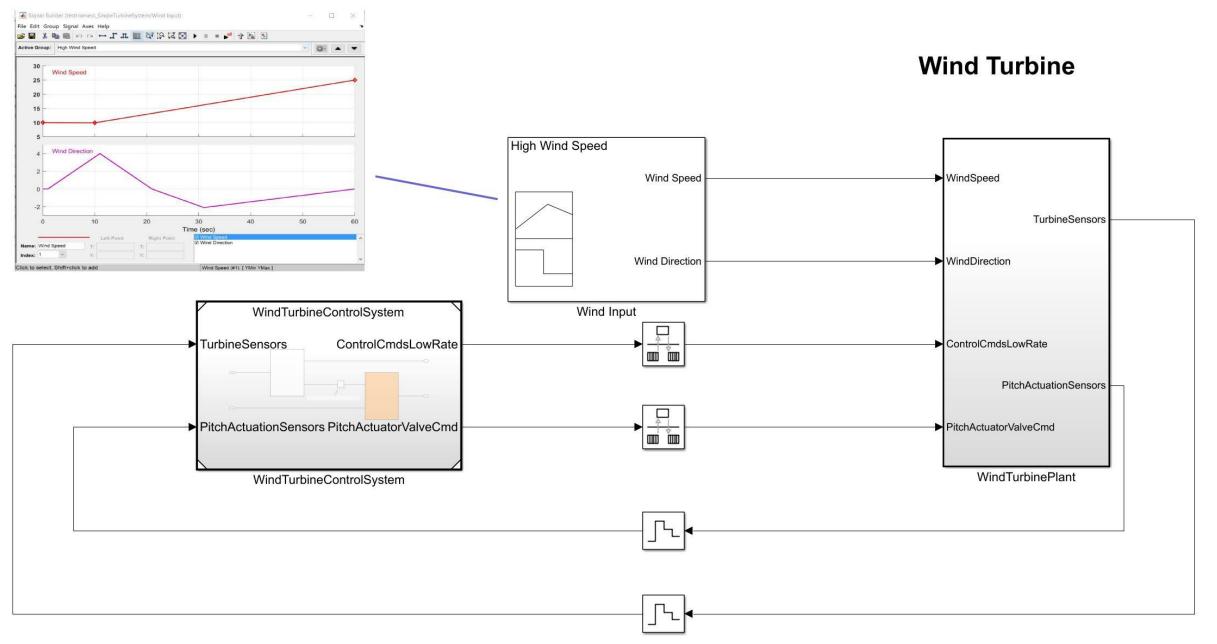
MATLAB EXPO2017Testing Simulink Models


Fraser Macmillen

Test Infrastructure

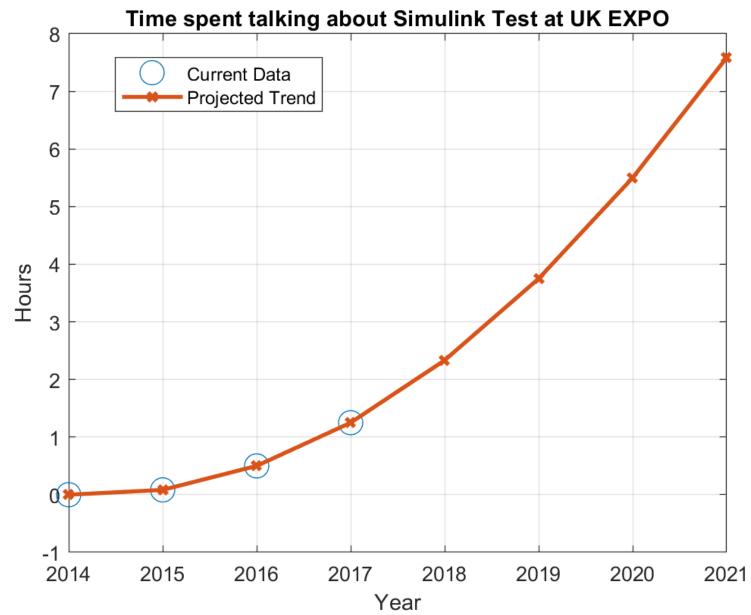
- Model set-up desired parameters, variants, operating point, etc.
 - e.g. test start up script
- Model stimulus desired inputs driving the model
 e.g. signal builder block, .xlsx, test sequence
- Views of behaviour signal traces, read-outs, animations, etc.
 e.g. scopes, simulation data inspector
- Verification of behaviour desired behaviour is checked
 e.g. verification blocks, post-simulation scripts

Common challenges:

- Problem: cannot do anything unless a particular script is run first Solution: use project startup, data dictionaries, models always "ready to go"
- Problem: model is tied to particular means of stimulus (from file, signal builder, etc)
- Solution: use test harnesses + variants
- **Problem:** changes to the design and test mixed together
- Solution: save test infrastructure externally to your design; separate source control
- **Problem**: one person's system is another person's component
- Solution: model referencing, suitable interfaces
- Problem: performance degraded by infrastructure not needed for "my test"
- Solution: multiple harnesses / variants
 MATLAB EXPO 2017

Simulink Test

Why Simulink Test?


Saves you time:

- Creating / managing test infrastructure
- generating & (re)-running multiple tests
- reporting results
- a common test environment everyone doing things in a consistent manner

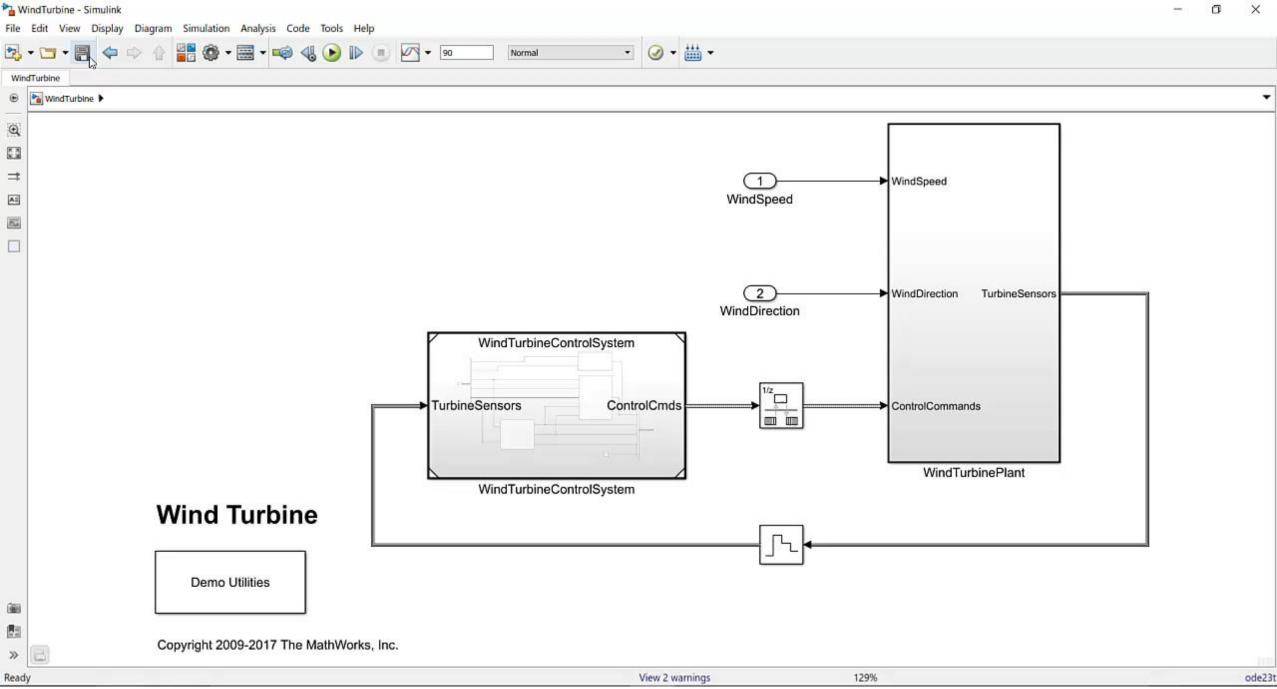
Gives you capability:

- new ways of authoring test scenarios
- easy integration with other tools (Requirements, Coverage, Test Generation, MATLAB Unit Test, Continuous Integration)

MATLAB EXFU ZUIT

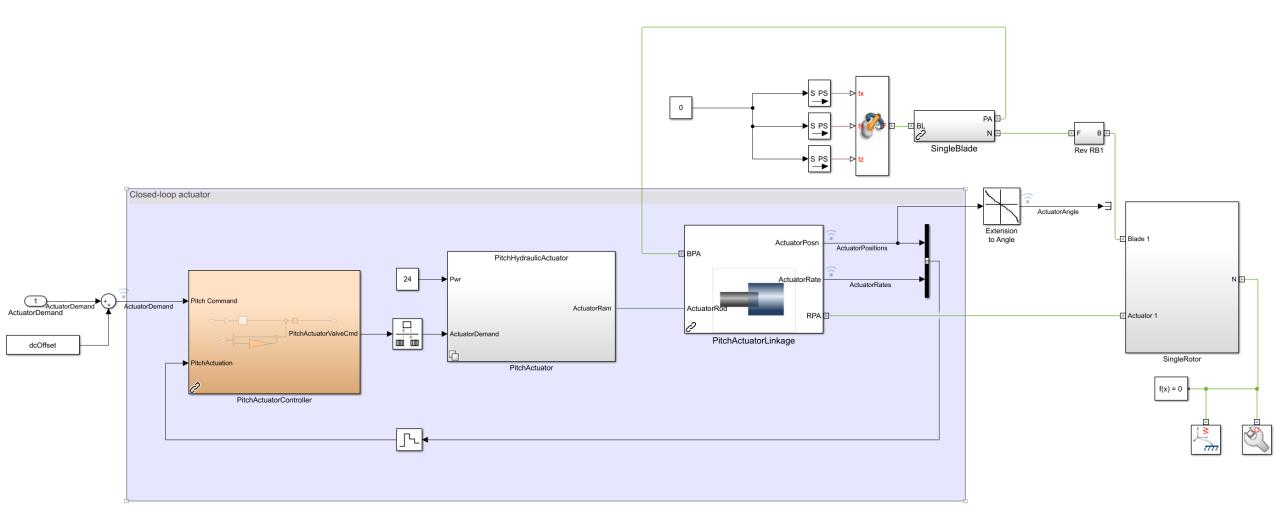
Simulink Test Overview

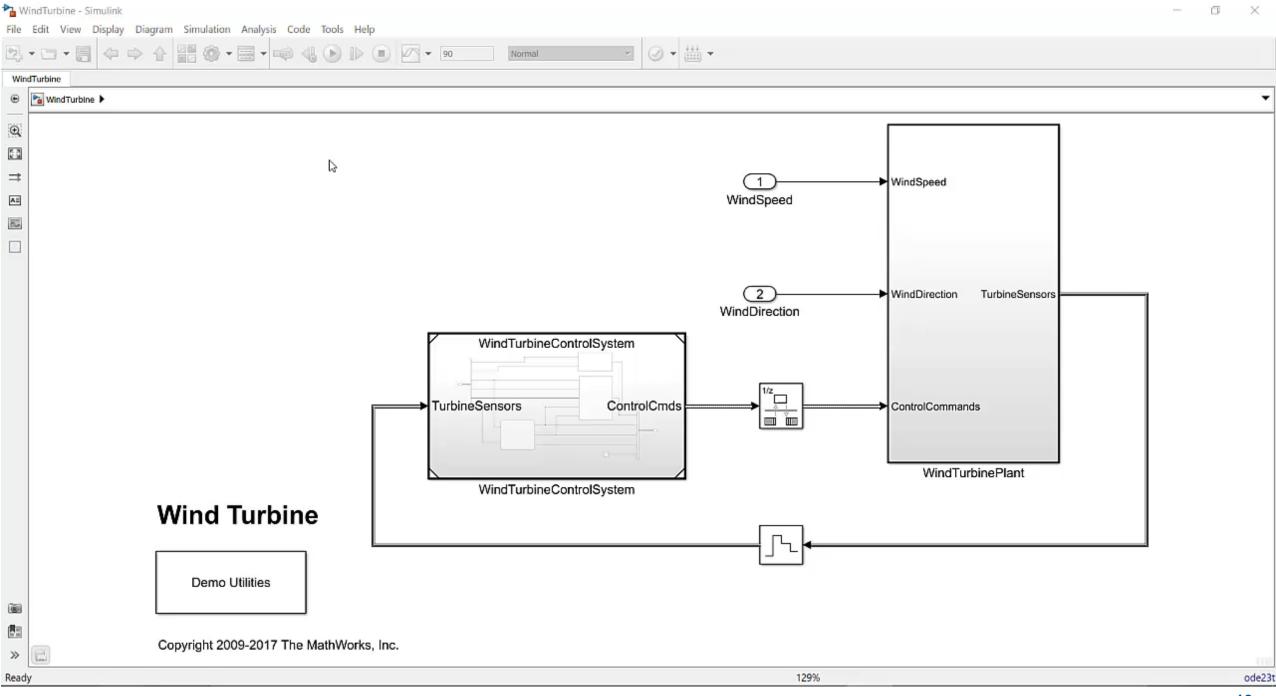
1. Test Harnesses	2 Test Stimulus Integration	3. Test Manager
Synchronized, simulatable test environment	 Inputs and assessments based on logical, temporal conditions 	 Author, execute, manage test cases Review, export, report
input maneuver	ta S ut gea tpu spe hro cal Deal Wind Speed Wind Speed Wind Direction p (t); np (t); np (t); speed throttle Edit-Delete Wind Speed Wind Speed throttle Edit-Delete Wind Speed	Image: Control - Regression Tests Image: Control - Regression Tests



Agenda

- Creating Test Harnesses
- Creating Test Cases
- Testing against Requirements
- Reporting
- Coverage analysis
- Multi-release regression testing
- Continuous integration




Test Harnesses

What if you already have a harness model....

Common questions...

Do I need a separate harness for each test?

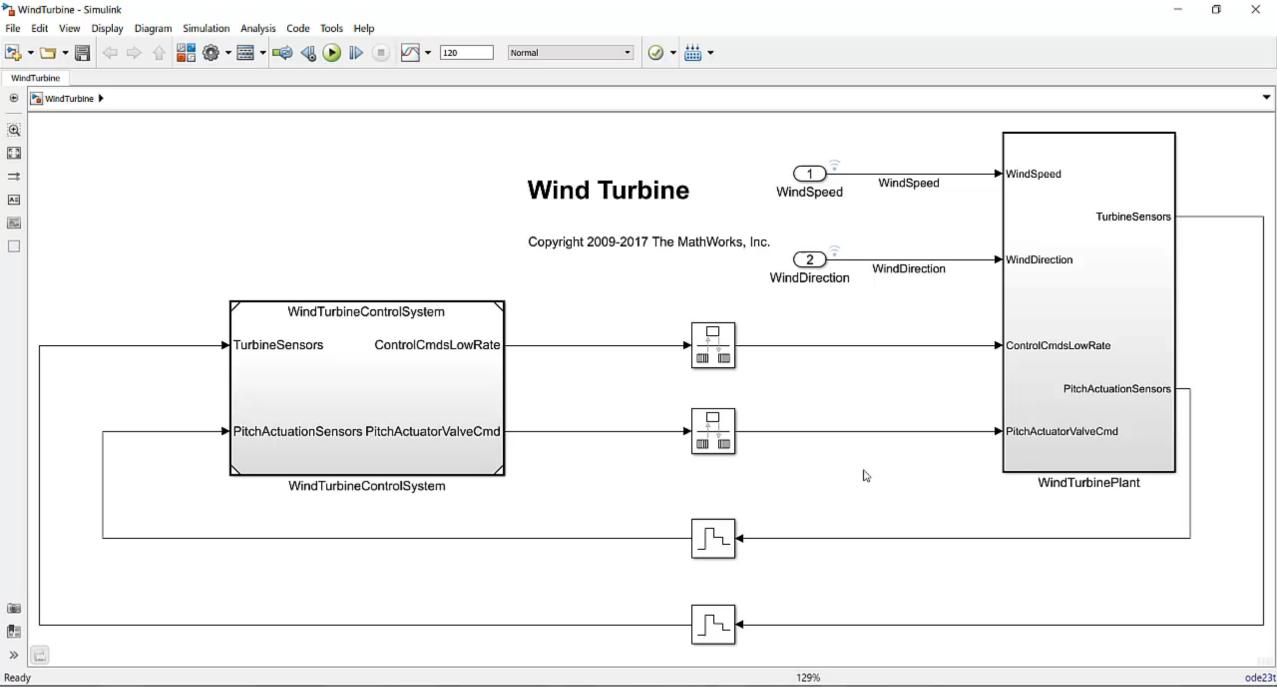
Test Harness Release Highlights

R2017a:

- Test harness import
- Create harnesses for components with physical (Simscape) connections
- More control over synchronisation

R2017b:

- Harness create/re-build callbacks
- Model comparison prior to synchronisation


Test Cases

&

Test Stimuli

Create a test case using the original signal builder

What have we done so far....

- Created and imported test harnesses
- Created a test case for running multiple simulations (iterations) with different scenarios

Common questions...

When should I use iterations vs multiple test cases?

▼ 📄 Ide	alTestCasesByScenario
	Constant Wind No Yaw
	Constant Wind
	High Speed Wind
	Cut Out
	Start Stop

Use iterations if:

- Same model/harness & test type
- Same set-up (callbacks)
- Usually run together
- Relate to same requirements(s)
- Can use fast-restart

Use separate test cases if:

- Need independent configuration control
- Different model/harness/test type or callbacks
- Relate to distinct requirements
- Distinct control of coverage

MATLAB EXPO 2017

RA	TIONS*
•	TABLE ITERATIONS*
	🖌 NAME 🔺
	✓ Constant Wind
	Constant Wind No Yaw
	Cut Out
	✓ High Wind Speed
	✓ Start Stop
	•

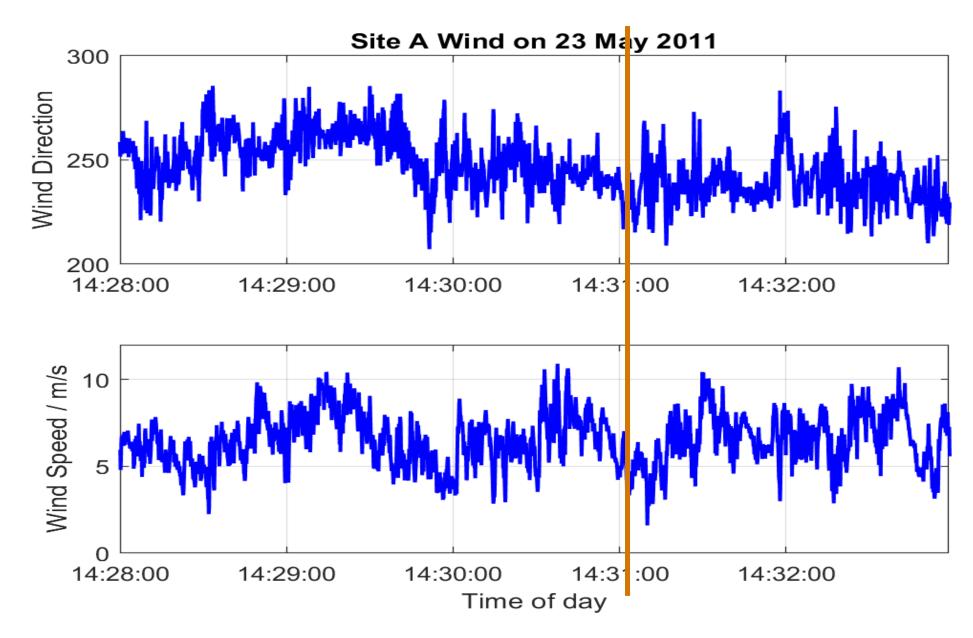
IdealTestCasesByScenario

Constant Wind

Cut Out

Start Stop

High Speed Wind


Constant Wind No Yaw

Create a test case using real-world recorded data

My data

WindDirection

WindSpeed

Time

Importing time-stamped data from Excel or text files

```
00:00:00.175
                                                                                                 14.59
                                                                                                         214.9
                                                                                      00:00:00.306
                                                                                                 14.47
                                                                                                         212.3
                                                                                      00:00:00.437
                                                                                                 16.1
                                                                                                         208.5
                                                                                      00:00:00.568
                                                                                                 17.94
                                                                                                         209.4
                                                                                      00:00:00.700
                                                                                                 17.53
                                                                                                         210.9
                                                                                      00:00:00.831
                                                                                                 16.93
                                                                                                         219.6
                                                                                      00:00:00.962
                                                                                                 15.25
                                                                                                         218.2
% pre-process .xlsx file
                                                                                      00:00:01.093
                                                                                                 12.73
                                                                                                         220.1
% get import options
                                                                                      00:00:01.224
                                                                                                 13.71
                                                                                                         212.2
                                                                                      00:00:01.355
                                                                                                 11.89
                                                                                                         218.6
importOptions = detectImportOptions('SiteWindDataRecorded.xlsx')
                                                                                      00:00:01.486
                                                                                                 15.94
                                                                                                         212.2
                                                                                      00:00:01.617
                                                                                                 16.51
                                                                                                         208.1
% set sheet
                                                                                      00.00.01 248
                                                                                                 17 11
                                                                                                         211 8
importOptions.Sheet = '2011 05 23';
% tell it that Time is in a date-time format
importOptions = setvartype(importOptions, 'Time', 'datetime');
importOptions = setvaropts(importOptions, 'Time', 'DatetimeFormat', 'HH:mm:ss.SSS);
% read data in
  = readtable('SiteWindDataRecorded.xlsx', importOptions);
  convert to timetable
8
   = table2timetable(T);
% re-sample to 1sec intervals
                                                                                     WindSpeed WindDirection
                                                                                 Time
TTT = retime(TT, 'secondly', 'nearest');
                                                                                  0
                                                                                         14.59
                                                                                                     214.9
                                                                                         15.25
                                                                                                     218.2
                                                                                  1
                                                                                         16.46
                                                                                                     212.2
                                                                                  2
  MATLAB EXPO 2017
                                                                                  3
                                                                                         16.08
                                                                                                     207.3
                                                                                                               24
```

O × ----FORMAT -2 • 兼 🕹 Import Parallel Report Visualize Highlight C Export Help Run Preferences Debug -ENVIRONMENT RESOURCES RUN RESULTS Test Browser Results and Artifacts 🖍 Start Page 🗙 🛅 IdealTestCases 🗙 🖹 OriginalTest 🗙 🖾 Visualize 🗙

OriginalTest

tests_ForEXPO » IdealTestCases » OriginalTest

1

٠

Simulation Test

Selectreleases for simulation: Current •

▶ DESCRIPTION

+ TAGS

▶ SYSTEM UNDER TEST*

PARAMETE

• INPUTS

▶ ITERATION

+ CUSTOM C

PROPERTY	VALUE
Name	OriginalTest
Туре	Simulation Test
Model	WindTurbine
Harness Name	testHarness_SingleTurbin
Simulation Mode	[Model Settings]
Location	C:\fmacmill\Demos\Genera.
Enabled	1
Record coverage for syste	
A.85	

A Simulink Test

TESTS

-

Open

FILE

▼ 🔄 tests_ForEXPO ▼ □ IdealTestCases

-

New

DATA INSPECTOR

& Cut

Copy

Paste

EDIT

6

Save

OriginalTest

RealWorldScenarios

.

Filter tests by name or tags, e.g. tags: test

1

Delete

•

>

ER OVERRIDES*			
NS*			
CRITERIA			

✓ Enabled

?

? ?

?

?

What have we done so far....

- Created and imported test harnesses
- Created a test case for multiple simulations (iterations)
- Created a test case importing real-world data from Excel using root import mapping

Testing Against Requirements (Verification)

Good quality textural requirements....

#	Property	Description
1	Correct	Requirement has no errors and is not an error
2	Compliant	with one or more documented upper level requirements (operational, customer needs, etc)
3	Complete	Each requirement covers all aspects of the requirement's intent.
4	Consistent	Is not in conflict with any other requirement. Is consistent with the environment
5	Validated	Ensures the requirement will lead to the right design, i.e. reflects fully, correctly and objectively system objectives, scope, operational use, etc
6	Achievable	Can be implemented in a cost-effective manner that considers cost and schedule constraints
7	Unambiguous	The requirement has only one possible interpretation. Questions are: Could the requirement be read different ways by different people? What are the different interpretations of the requirement?
8	Verifiable	Expected performance or functionality expressed in a manner that allows verification to be objective, preferably as a result of an observable, ideally measurable, effect
9	Singular	Use a unique "shall" in each textual requirement to express a single design Demand (unique intent).
10	Positive	Negative requirements are very difficult, if not impossible, to verify. Negative requirement may be used only for safety requirements
11	Adequate	Each requirement is expressed as a problem statement i.e. it defines what is needed, not a solution, except if a particular implementation is a constraint to be resolved by design and test

This model had requirements such as...

9. Pitch Controller Requirements

÷		
	Track angle within	0.2 degree
	Rotor speed	Wthin 10% of nominal
	Rise Time	3 seconds
	Settling Time	5 seconds

These are ambiguous, incomplete, and not clearly verifiable

Hopefully a bit better is...

REQ001: when in power generation mode the rotor speed shall be maintained within $\pm 10\%$ of the [RotorNominalSpeed]

Definition: [RotorNominalSpeed] shall be calculated for a given turbine design to correspond to the rated generator speed converted to rotor speed based upon gearing implementation to requirements [ref. TBD].

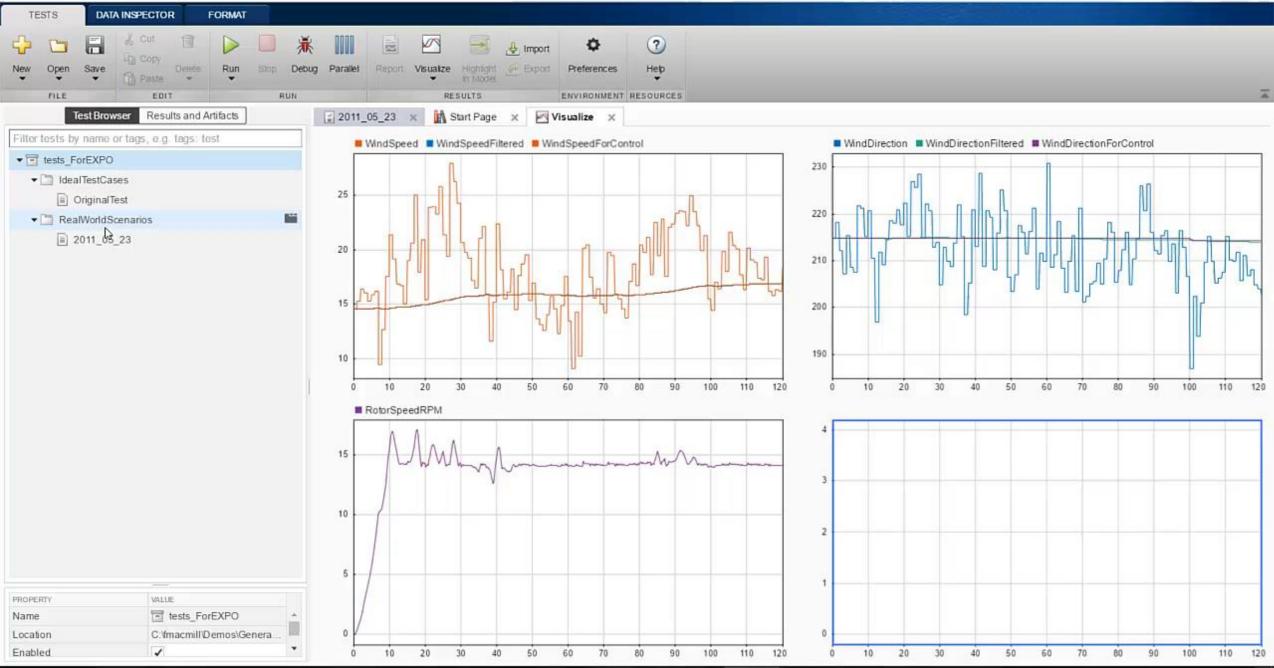
Rationale: control average power, shed aerodynamic load

Verification: by system level simulation

REQ002: under inertial load only (zero aerodynamic load) the rise time of the blade pitch angle to a $\pm 10^{\circ}$ step change in pitch angle demand shall be less than 3 seconds

Definition: rise time shall be measured as the time elapsed from initiation of the step to 90% of the expected response.


Rationale: design experience [Ref. TBD] indicates meeting this requirement is a prerequisite for meeting REQ001 & braking requirements of [TBD]


Verification: by sub-system simulation

Example 1: Using verify() to test against a requirement

📣 Simulink Test

Further considerations...

- Testing at an appropriate level
 i.e. system sub system component
- Verification of more complex requirements

Example 2: Using custom criteria to test against a requirement

🖬 🖘 🖉 📽 -	-					۷	Vind_Turbine_	Requirement	s.docx [Compa	tibility Mode]	- Word				Fraser Macmillen	Ē	- 3	/x
File Home Inse	t Draw Desig	in Layout	References	Mailings	Review V	liew	Developer	Add-ins	♀ Tell me w	nat you want t	o do						유 Sha	re 🖵
Cut Copy Paste Format Painter Clipboard					≣• <u>&</u> •		1101250 50025		AaBbC 1 Heading 3					<i>AaBbCcL</i> Subtle Em	 P Find * chac Replace Replace * Select * Editing 	Previous Item	Next Back Item	
L - -	3	· · · 2 · · 1	• 1 • • • • • • • • • • • • • • • • • •	EQ002: u									as //	16 - + + 17 +	1 - 18 -			

angle to a $\pm 10^{\circ}$ step change in pitch angle demand shall be less than 3 seconds

Definition: rise time shall be measured as the time elapsed from initiation of the step to 90% of the expected response.

Rationale: design experience [Ref. TBD] indicates meeting this requirement is a prerequisite for meeting REQ001 & braking requirements of [TBD]

Verification: by sub-system simulation

REQ003: under inertial load only (zero aerodynamic load) the settling time of the blade pitch angle to a $\pm 10^{\circ}$ step change in pitch angle demand shall be less than 5 seconds

Definition: settling time shall be measured as the time elapsed from initiation of the step to the response remaining within 5% of the expected response.

Rationale: design experience [Ref. TBD] indicates meeting this requirement is a prerequisite for meeting REQ001 & braking requirements of [TBD]

Verification: by sub-system simulation

H

2

E

1

35

16

5

1309

88

R2017a

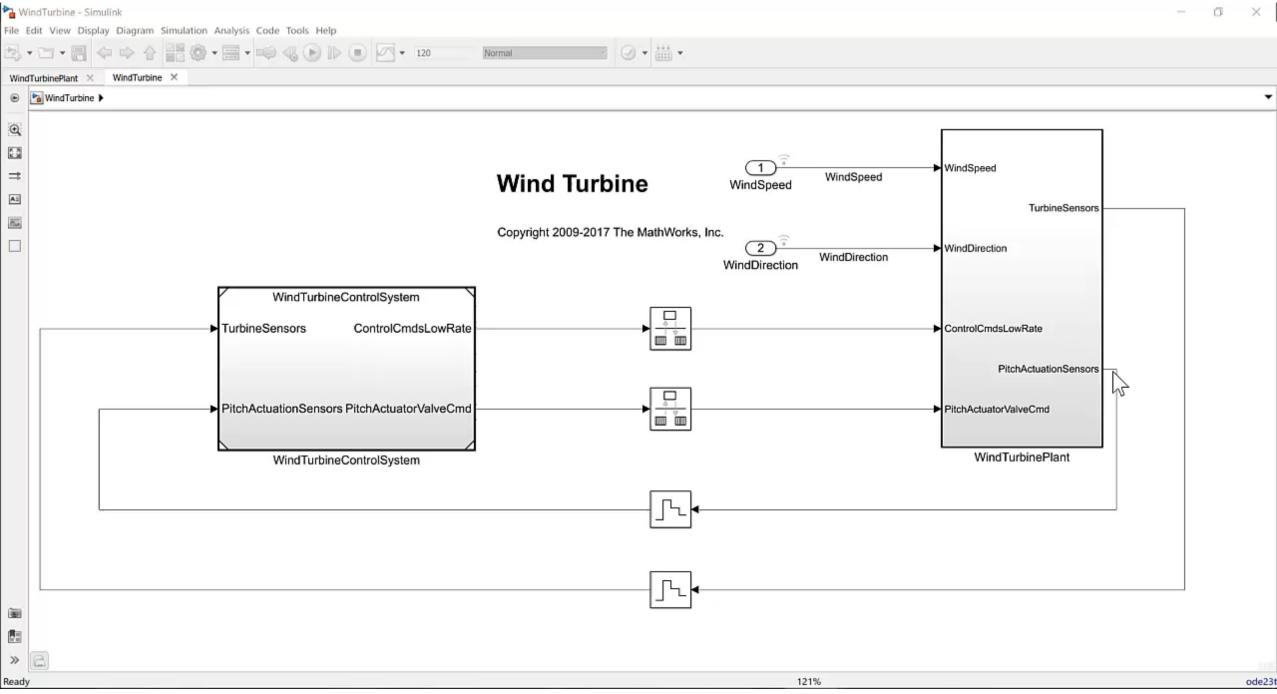
Types of Qualifications

Qualifications are functions for testing values and responding to failures. There are four types of qualifications:

- · Verifications Produce and record failures without throwing an exception, meaning the remaining tests run to completion.
- Assumptions Ensure that a test runs only when certain preconditions are satisfied and the event should not produce a test failure. When an assumption failure occurs, the testing framework marks the test as filtered.
- · Assertions Ensure that the preconditions of the current test are met.
- Fatal assertions Use this qualification when the failure at the assertion point renders the remainder of the current test method invalid or the state is unrecoverable.

Type of Test	Verification	Assumption	Assertion	Fatal Assertion
Value is true.	verifyTrue	assumeTrue	assertTrue	fatalAssertTrue
Value is false.	verifyFalse	assumeFalse	assertFalse	fatalAssertFalse
Value is equal to specified value.	verifyEqual	assumeEqual	assertEqual	fatalAssertEqual
Value is not equal to specified value.	verifyNotEqual	assumeNotEqual	assertNotEqual	fatalAssertNotEqual
Two values are handles to same instance.	verifySameHandle	assumeSameHandle	assertSameHandle	fatalAssertSameHandle
Value is not handle to specified instance.	verifyNotSameHandle	assumeNotSameHandle	assertNotSameHandle	fatalAssertNotSameHandle
Function returns true when evaluated.	verifyReturnsTrue	assumeReturnsTrue	assertReturnsTrue	fatalAssertReturnsTrue
Test produces unconditional failure.	verifyFail	assumeFail	assertFail	fatalAssertFail
Value meets given constraint.	verifyThat	assumeThat	assertThat	fatalAssertThat
Value is greater than specified value.	verifyGreaterThan	assumeGreaterThan	assertGreaterThan	fatalAssertGreaterThan
Value is greater than or equal to specified value.	verifyGreaterThanOrEqual	assumeGreaterThanOrEqual	assertGreaterThanOrEqual	fatalAssertGreaterThanOrEqual
Value is less than specified value.	verifyLessThan	assumeLessThan	assertLessThan	fatalAssertLessThan
Value is less than or equal to specified value.	verifyLessThanOrEqual	assumeLessThanOrEqual	assertLessThanOrEqual	fatalAssertLessThanOrEqual
Value is exact specified class.	verifyClass	assumeClass	assertClass	fatalAssertClass
Value is object of specified type.	verifyInstanceOf	assumeInstanceOf	assertInstanceOf	fatalAssertInstanceOf
Value is empty.	verifyEmpty	assumeEmpty	assertEmpty	fatalAssertEmpty
Value is not empty.	verifyNotEmpty	assumeNotEmpty	assertNotEmpty	fatalAssertNotEmpty
Value has specified size.	verifySize	assumeSize	assertSize	fatalAssertSize
Value has specified length.	verifyLength	assumeLength	assertLength	fatalAssertLength
Value has specified element count.	verifyNumElements	assumeNumElements	assertNumElements	fatalAssertNumElements
String contains specified string.	verifySubstring	assumeSubstring	assertSubstring	fatalAssertSubstring
Text matches specified regular expression.	verifyMatches	assumeMatches	assertMatches	fatalAssertMatches
Function throws specified exception.	verifyError	assumeError	assertError	fatalAssertError
Function issues specified warning.	verifyWarning	assumeWarning	assertWarning	fatalAssertWarning
Function issues no warnings.	verifyWarningFree	assumeWarningFree	assertWarningFree	fatalAssertWarningFree

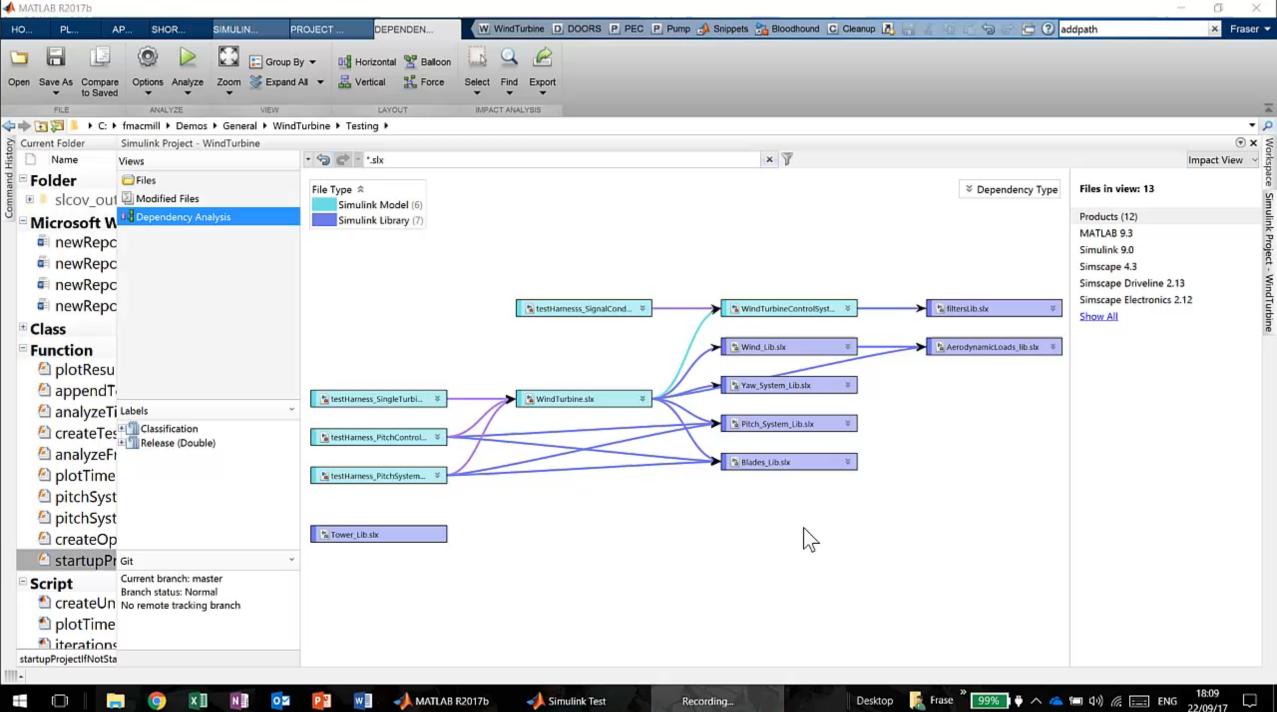
Test across multiple operating points?


(trim conditions)

Test Browser Results and Artifacts	PitchControlTests 🗙 🚮 Start Page 🗙 🖹 TimeResponse
Filter tests by name or tags, e.g. tags: test	Test Suite
▼	Select releases for simulation: Current 💌
IdealTestCases	- CALLBACKS
RealWorldScenarios	
✓ Im PitchControlTests	• SETUP
AllOperatingPoints	Runs before test suite executes
■ TimeResponse	
	 CLEANUP Runs after test suite executes
	Runs after test suite executes
	1

×

Incorporating coverage analysis



Regression & cross-release testing

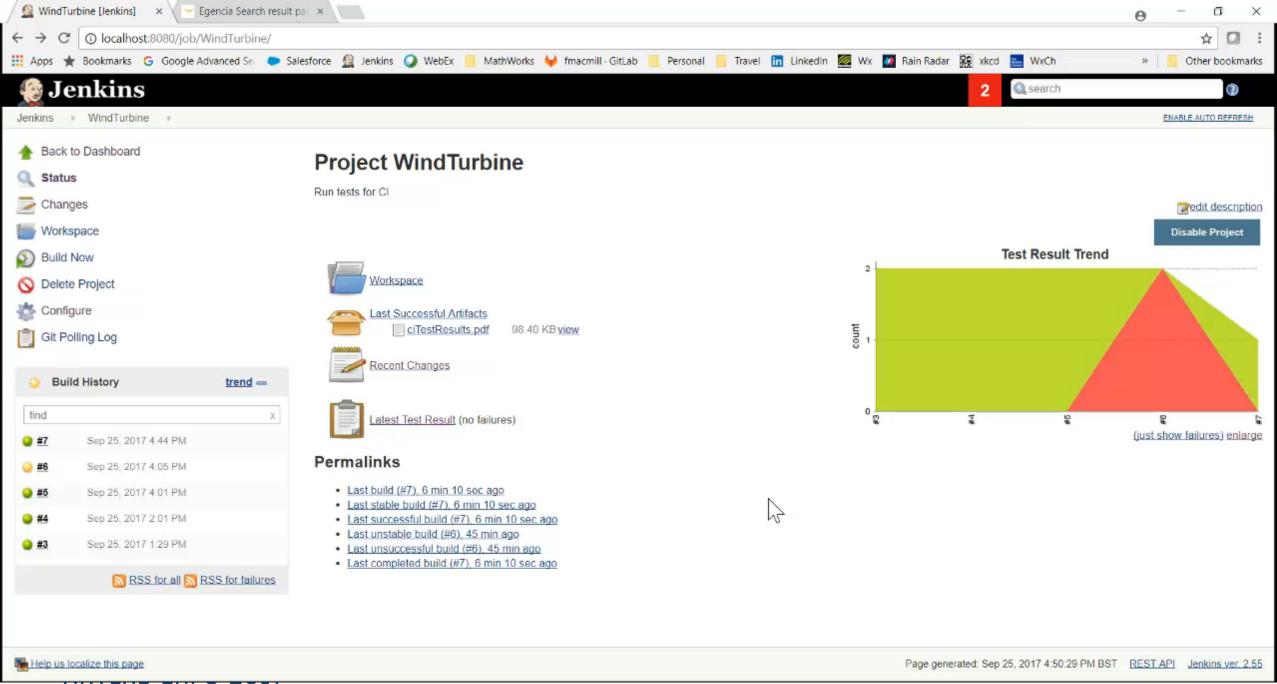
A MATLAB R2017b

-

0

×∏ N AMATLAB R2017b 📣 Simulink Test

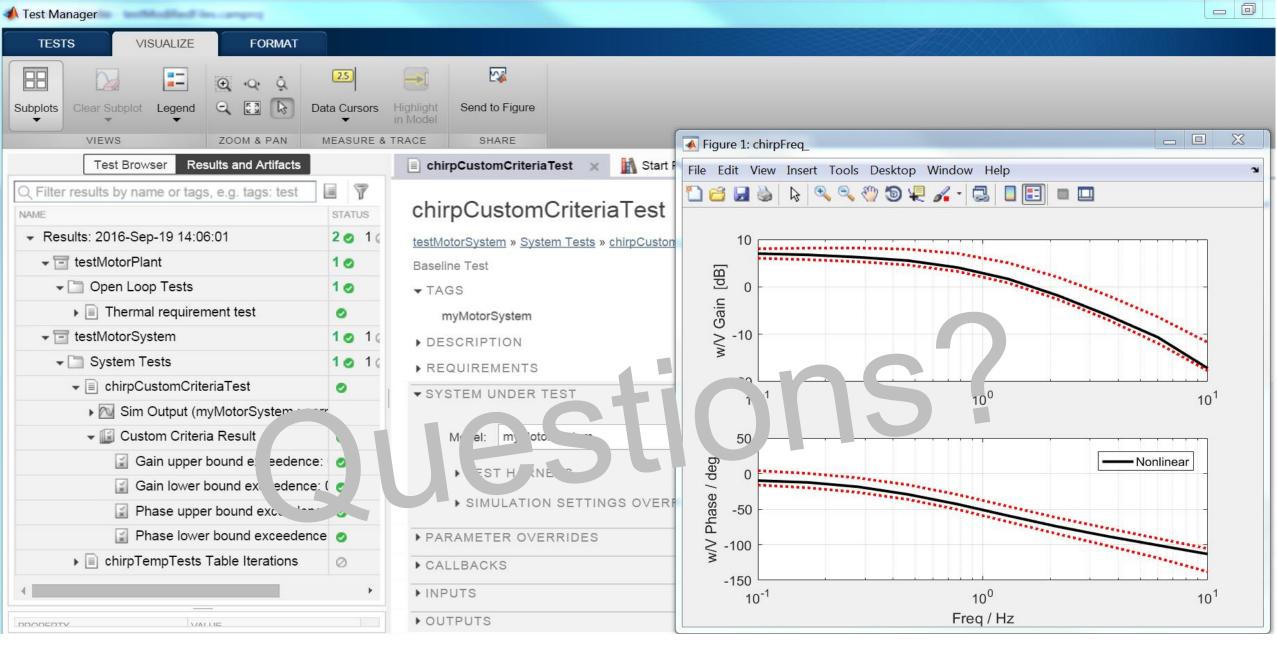
Recording...


Desktop

 \Box

22/09/17

Continuous Integration



Conclusions

Benefits of Simulink Test

- Ease of creation, organisation & control of test harnesses
- Ease of driving your models with data from various sources
- Ease of verify() for in-harness/model verification of requirements
- Ease of test case set-up for multiple inputs, parameters, operating points, etc.
- Ease of reporting
- Ease of integration: requirements, coverage, MATLAB Unit Test, continuous integration, ...

