
1© 2015 The MathWorks, Inc.

Team-Based Collaboration in 

Simulink

Sonia Bridge



2

Create tools that make it easy for

teams to manage the full lifecycle of their

Model-Based Design projects

Collaborate Integrate Analyse
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Common Challenges

How to:

▪ Create a more efficient team-based environment?

▪ Effectively componentize system designs including data?

▪ Track design changes?

▪ Use source control functionality within Simulink?

▪ Associate project-level information with files?

▪ Utilise automation to maximise efficiency in enforcing best practices?

▪ Share work within the group and outside the group?

▪ Transfer knowledge across projects?
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Simulink Project

Foundation technology supporting efficient 

Model-Based Design in teams

– Enables sharing of work

– Ensures a project is complete (files, data)

– Ensures consistent environment across a team 

(MATLAB path, data, slprj location, …)

– Supports different entry points and sharing best 

practices via shortcuts

– Enables associating project-level information with 

files via labels

– Part of Simulink (first shipped in R2011b)

Supports advanced users

– Impact analysis: what is the impact of a change?

– Rich APIs to script  and customize
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Getting started with an existing project



6

Simulink project “mistake-proofs” your

team environment

No more MATLAB code required to manage

▪ MATLAB Path via UI

▪ Locations for generated files (“slprj”)

“I’m going to try my project on

the new Linux cluster” 
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Simulink Projects Shortcuts

▪ Make it easy for any engineer (not just the engineer who created 

the project) to:

– Find important files

– Find and execute important or common operations

▪ Make the top-level model in the project a shortcut

– All debuggable

▪ Optionally set tasks to run at project start-up or shutdown

– Provides formal mechanism for running initialization scripts

– Makes it easier to ensure the symmetric shutdown scripts are called
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Task Automation – Configuring Project Environment

▪ Robustly configure the 

team environment

▪ For everyone

▪ Automatically
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Using Simulink Projects to Create a Consistent 

Cross-Team Environment

▪ Benefits:

– Everyone on the team has the same environment

– New team members can get started more quickly

– Less wasted time debugging discrepancies
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Integration with Source Control
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How do people share and manage projects?

Q: “How do you manage the files and data 

within your projects?”

1. Named folders (“project_v1”, “project_v2”, etc.)

2. Source Control tool

3. Application Lifecycle Management (ALM) tool

At an SAE webinar on “Model-Based Engineering”, question asked:
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How do people share and manage projects?

Majority use COTS tools for managing 

work & sharing information

▪ Source control

▪ Application Lifecycle Management 

(ALM)

Surprise was the number just using the 

file system

▪ Doesn’t scale well

▪ Doesn't support team work

▪ So why were they doing it?

© SAE International Source: SAE survey of participants 

of “Model-Based  Engineering” webinar, April 2014

15%

32%

53%

ALM Named

Folders

Source

Control
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Source Control Integrations

Microsoft Team Foundation Server 

(TFS) integration available now from 

MathWorks File Exchange
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Compare and Merge Simulink Models

▪ Comparison and merge available with 

Simulink

▪ Easily select changes to merge into new 

target model file

▪ Highlight changes in the Simulink editor

▪ Launch comparison from the MATLAB 

desktop, current folder browser, command 

line, or source control

▪ Create reports for archiving and review

Simplified comparison and merge 

workflow for Simulink models

» slxml_sfcar
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Integrating Work from Different Engineers via Merge

▪ Supports concurrent 

engineering

▪ Lets you concentrate on 

design
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Componentization
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Complex Design Development through Componentization

▪ Supporting team-based workflows

– Faster modular development

– More effective verification

– Increased reusability
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Simulink Architectural Components

▪ Virtual subsystem

– Graphical component – The contents are flattened to the level of the 

parent system during execution.

▪ Atomic subsystem

– Simulink executes all blocks as a unit before executing the next 

block

– Context dependent so inherits properties such as dimensions and 

data types from the parent model

▪ Model block

– Executed as a unit

– Context independent so doesn’t inherit properties from parent model



19

Component selection strategy

▪ Virtual and Atomic Subsystems

– When scalability is not an issue

– When the atomic subsystem boundary is acceptable

– During early development of the system

▪ Model Reference

– When scalability is needed

– When hard interfaces are critical 

– To enable concurrent teamwork and unit testing

▪ Library Components

– Reused utility functions



20

Component-Based Modelling

▪ Criteria for componentization:

– Base the component boundaries on those of the real system 

– Define components distinctly so that only one engineer at a time needs to edit a 

component. 

– Subdivide components that are too big and those that could become too big as the 

design is elaborated.

▪ Recognize that there is no silver bullet

– Experience is key here as well

▪ Start discussing this early in your project

– What should be the criteria for componentization?

– Who owns which component?



21

Simulink

SLX

FileSLX

File

Partitioning Design Data

Model 1

Model 2

Model 3

SLX

File

SLDD

FileSLDD

FileSLDD

File

MATLAB Workspace

Global Data

Local Data

in the Model

Global Design Data 

in a Data Dictionary

Executable Specification = Algorithm + Data
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Why Simulink Data Dictionary?

Simulink Data Dictionary

▪ Separate 

▪ Partitioning

▪ Change detection

– Shows changed items

– Differencing

– Revert

▪ Traceability

▪ Data persistence

▪ Conflict resolution

Base Workspace Limitations

▪ Mixed with MATLAB data

▪ Lack of organization

▪ Lack of change detection

– What changed?

– How did it change?

– Can’t revert changes

▪ Where did it come from?

▪ Lack of data persistence

▪ Conflict resolution issues
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▪ This subsystem has same 

name as parent model

▪ Probably not the best name

▪ What is it..?



24

Demo

▪ Refactor into a new Model Reference

▪ Advisor helps automate/mistake proof the process

▪ Dependency analysis helps ensure we do not “lose” this new component

▪ Refactoring support for renaming

▪ Find dependencies to help work out why there are some other components 

with poorly chosen names (like “lift_intertia”)



25

Simulink Project: Automatic Renaming

▪ Update model references and library links 

when renaming Simulink models.

▪ Update MATLAB code and model/block 

callbacks when renaming m/mlx files.

▪ Warn when deleting a file that is used by 

other files in the project.

▪ Update the MATLAB path when adding 

models or code files to the project.

Automatically update files impacted by 

renaming, removing and deleting 

project files.

» slexPowerWindowStart

Rename, remove or delete a file from the project.
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Dependency Analysis – Modular Development

Show model structure

List products required

Highlight issues
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Highlight Missing Products Required by a Project

▪ Dependency analysis reports the 

products required by a project

▪ Products that are not installed shown as 

“(Missing)”.

▪ Files that use missing products show a 

warning icon. Click the file to see the 

missing products in the side panel.

▪ Open the model to get links to download 

missing products

Find the products needed to use a 

project
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Using labels to share and store 

information
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Using Labels to Add Information to the Project

▪ Done lots of work to understand what the different parts are

▪ Wouldn’t it be nice to record that so others do not have to repeat this?

▪ What are labels?

▪ Apply some labels to the project
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Simulink Project Labels

▪ Easily see and edit label data for all labels 

attached to a file.

▪ Use drag and drop to add labels.

▪ Easily switch between single-valued labels.

Easily add, modify and view labels 

attached to a file.
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Note on Metadata

▪ What do we mean by metadata?

▪ Wikipedia: “Data about data”

▪ MathWorks: “Data about files” 

▪ Data that is about the file, not (necessarily) part of it. For example:

▪ FuelType = Gas, Diesel

▪ ReleaseStatus = Research, Prototype, Production, Sunset

▪ SecurityClassification = Unclassified, Protected, Restricted, Confidential

▪ FileClassification = Design, Derived, Artefact

▪ TestedWith = R2010b, R2011a, R2011b, ...

▪ Coverage Metric = 84%

▪ Metadata can change without the file it relates to having to change.

Metadata
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Labels + Dependency analysis = Impact Analysis

▪ “What is the impact of 

changing the supervisory 

control model?”

▪ “What tests do I need to run 

to verify those changes?”

▪ All accessible from 

command-line API for full 

automation
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More options for automation
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Why Automate?

▪ Automated Processes Get Done

– Regularly (if needed)

– Repeatable

– Can be done by anyone

▪ Corollaries

– Manual processes are often infrequently done

– Can be subject to variation

– Perhaps only one person can do them
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How can Automation in Simulink Project help?

▪ Now anyone can rebuild the S-Functions

– (or run the tests; generate code; publish the reports; import and validate test data; …)

– Even at 8:34pm on a Friday night; on a testing trip; …

▪ Groups help provide structure

– Group by type; or by job function (project manager group; testing group)
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Automation Options in Simulink Projects

▪ Build-in “best practice” support

– Project Checks

– Growing list of our own “gotchas”
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Run Custom Tasks and Create Reports

▪ Select custom functions and files more easily

▪ View sets of results side-by-side

▪ Generate reports from custom task results

▪ Note: Custom tasks were known as “batch 

jobs” in releases before R2017a

Open custom task control from the toolstrip

» sldemo_slproject_batchjobs

Follow the feature slide best practices

and use slide as a starting point.

For Simulink code generation examples, don’t forget to

configure model using rtwconfiguredemo(model,‘ERT’,…)

http://inside.mathworks.com/wiki/Feature_Slide_Best_Practices
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Example Custom Task

▪ Very small amount of code 

required

▪ Common patterns

– Is this a file of type X?

– Does this file have a label 

from category X with value Y?
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Simulink Project API

▪ Easily access information for the project

▪ Add, remove, inspect files and labels

If under source control, 

▪ See source control information for files

▪ Get the list of modified files
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More options for sharing
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Most Common Challenge in Sharing Work

“It works on my computer, just not on yours…”

Common causes:

▪ Incomplete set of files

▪ Different environment

– (software versions, MATLAB path, …)

▪ Wrong data loaded

▪ What do I do to get started?

?
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Sharing work outside source control

Simulink Project has built in capabilities for sharing

▪ GitHub

– Collaborative sharing

– Expect to make changes together

▪ Archive file

– Fast sharing of “what I am doing now”

– “Delivery” workflows: 

▪ Send a package of work

▪ Work independently

▪ Receive a package of work back



43

How much to share?

▪ Typically do not want to share all my project with a 

supplier or customer

▪ Reduce to the minimum to

– Avoid sharing IP I want to keep in-house

– Keep it simple

▪ Create “Export Profiles” to manage which 

files are exported from project

– Uses project labels to set up exclusion rules

– Set up many profiles for different workflows

▪ Sharing to supplier (share only what is needed)

▪ Share to customer (shield my IP)

▪ Share to HIL rig (no tests, doc, requirements)

▪ Etc.
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Knowledge transfer



45

Model Templates

▪ Use shipped templates to get started with 

building models or create custom templates to 

from a Simulink model

– Avoid problem of corrupting original file 

when creating a new model

▪ Avoid repetitive tasks when starting out to 

build a new model

▪ Enforce a standard process for building 

models for the entire team or organization

Build models using design patterns that 

serve as starting points to solve common 

problems
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Projects can reference other projects

▪ Develop reusable components

using projects

▪ Flexible referencing: 

– Relative

– Absolute

▪ Extract folders to referenced projects

▪ Deep hierarchies are supported

Componentize large

modelling projects

» sldemo_slproject_airframe_references
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Include References in Templates for Sharing and 

Reuse

▪ Start from a project with references

▪ Create a template including the references

▪ Save it on the MATLAB path or double click 

it to see it in the start page

▪ Create a new project based on the template

Template with references
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Summary

▪ Common challenges addressed!

– Structured/ Common Environment

– Graphical Dependency Analysis

– Source Control Integration

– Automation of common tasks

– Options for sharing work

– Parallel development workflows

– Knowledge retention

▪ Simulink Projects for efficient team collaboration workflows

▪ Try it Today!
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Additional Resources

▪ Documentation

– Project Management

▪ Example

– Using a Simulink Project

▪ Tutorials

– Try Simulink Project Tools with the Airframe Project

– Create a New Project to Manage Existing Files

▪ Training

– Simulink Model Management and Architecture

▪ Consulting

– Proven Solutions from MathWorks Consulting Services

http://www.mathworks.com/help/simulink/project-management.html
http://www.mathworks.com/help/simulink/ug/try-simulink-project-tools-with-the-airframe-project.html
http://www.mathworks.com/help/simulink/ug/create-a-new-project-to-manage-existing-files.html
http://www.mathworks.com/services/training/courses/SLMB_1.html
http://www.mathworks.com/services/consulting/proven-solutions/
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Support



51

Q & A


