
1© 2015 The MathWorks, Inc.

Team-Based Collaboration in

Simulink

Sonia Bridge

2

Create tools that make it easy for

teams to manage the full lifecycle of their

Model-Based Design projects

Collaborate Integrate Analyse

3

Common Challenges

How to:

▪ Create a more efficient team-based environment?

▪ Effectively componentize system designs including data?

▪ Track design changes?

▪ Use source control functionality within Simulink?

▪ Associate project-level information with files?

▪ Utilise automation to maximise efficiency in enforcing best practices?

▪ Share work within the group and outside the group?

▪ Transfer knowledge across projects?

4

Simulink Project

Foundation technology supporting efficient

Model-Based Design in teams

– Enables sharing of work

– Ensures a project is complete (files, data)

– Ensures consistent environment across a team

(MATLAB path, data, slprj location, …)

– Supports different entry points and sharing best

practices via shortcuts

– Enables associating project-level information with

files via labels

– Part of Simulink (first shipped in R2011b)

Supports advanced users

– Impact analysis: what is the impact of a change?

– Rich APIs to script and customize

5

Getting started with an existing project

6

Simulink project “mistake-proofs” your

team environment

No more MATLAB code required to manage

▪ MATLAB Path via UI

▪ Locations for generated files (“slprj”)

“I’m going to try my project on

the new Linux cluster”

7

Simulink Projects Shortcuts

▪ Make it easy for any engineer (not just the engineer who created

the project) to:

– Find important files

– Find and execute important or common operations

▪ Make the top-level model in the project a shortcut

– All debuggable

▪ Optionally set tasks to run at project start-up or shutdown

– Provides formal mechanism for running initialization scripts

– Makes it easier to ensure the symmetric shutdown scripts are called

8

Task Automation – Configuring Project Environment

▪ Robustly configure the

team environment

▪ For everyone

▪ Automatically

9

Using Simulink Projects to Create a Consistent

Cross-Team Environment

▪ Benefits:

– Everyone on the team has the same environment

– New team members can get started more quickly

– Less wasted time debugging discrepancies

10

Integration with Source Control

11

How do people share and manage projects?

Q: “How do you manage the files and data

within your projects?”

1. Named folders (“project_v1”, “project_v2”, etc.)

2. Source Control tool

3. Application Lifecycle Management (ALM) tool

At an SAE webinar on “Model-Based Engineering”, question asked:

12

How do people share and manage projects?

Majority use COTS tools for managing

work & sharing information

▪ Source control

▪ Application Lifecycle Management

(ALM)

Surprise was the number just using the

file system

▪ Doesn’t scale well

▪ Doesn't support team work

▪ So why were they doing it?

© SAE International Source: SAE survey of participants

of “Model-Based Engineering” webinar, April 2014

15%

32%

53%

ALM Named

Folders

Source

Control

13

Source Control Integrations

Microsoft Team Foundation Server

(TFS) integration available now from

MathWorks File Exchange

14

Compare and Merge Simulink Models

▪ Comparison and merge available with

Simulink

▪ Easily select changes to merge into new

target model file

▪ Highlight changes in the Simulink editor

▪ Launch comparison from the MATLAB

desktop, current folder browser, command

line, or source control

▪ Create reports for archiving and review

Simplified comparison and merge

workflow for Simulink models

» slxml_sfcar

15

Integrating Work from Different Engineers via Merge

▪ Supports concurrent

engineering

▪ Lets you concentrate on

design

16

Componentization

17

Complex Design Development through Componentization

▪ Supporting team-based workflows

– Faster modular development

– More effective verification

– Increased reusability

18

Simulink Architectural Components

▪ Virtual subsystem

– Graphical component – The contents are flattened to the level of the

parent system during execution.

▪ Atomic subsystem

– Simulink executes all blocks as a unit before executing the next

block

– Context dependent so inherits properties such as dimensions and

data types from the parent model

▪ Model block

– Executed as a unit

– Context independent so doesn’t inherit properties from parent model

19

Component selection strategy

▪ Virtual and Atomic Subsystems

– When scalability is not an issue

– When the atomic subsystem boundary is acceptable

– During early development of the system

▪ Model Reference

– When scalability is needed

– When hard interfaces are critical

– To enable concurrent teamwork and unit testing

▪ Library Components

– Reused utility functions

20

Component-Based Modelling

▪ Criteria for componentization:

– Base the component boundaries on those of the real system

– Define components distinctly so that only one engineer at a time needs to edit a

component.

– Subdivide components that are too big and those that could become too big as the

design is elaborated.

▪ Recognize that there is no silver bullet

– Experience is key here as well

▪ Start discussing this early in your project

– What should be the criteria for componentization?

– Who owns which component?

21

Simulink

SLX

FileSLX

File

Partitioning Design Data

Model 1

Model 2

Model 3

SLX

File

SLDD

FileSLDD

FileSLDD

File

MATLAB Workspace

Global Data

Local Data

in the Model

Global Design Data

in a Data Dictionary

Executable Specification = Algorithm + Data

22

Why Simulink Data Dictionary?

Simulink Data Dictionary

▪ Separate

▪ Partitioning

▪ Change detection

– Shows changed items

– Differencing

– Revert

▪ Traceability

▪ Data persistence

▪ Conflict resolution

Base Workspace Limitations

▪ Mixed with MATLAB data

▪ Lack of organization

▪ Lack of change detection

– What changed?

– How did it change?

– Can’t revert changes

▪ Where did it come from?

▪ Lack of data persistence

▪ Conflict resolution issues

23

▪ This subsystem has same

name as parent model

▪ Probably not the best name

▪ What is it..?

24

Demo

▪ Refactor into a new Model Reference

▪ Advisor helps automate/mistake proof the process

▪ Dependency analysis helps ensure we do not “lose” this new component

▪ Refactoring support for renaming

▪ Find dependencies to help work out why there are some other components

with poorly chosen names (like “lift_intertia”)

25

Simulink Project: Automatic Renaming

▪ Update model references and library links

when renaming Simulink models.

▪ Update MATLAB code and model/block

callbacks when renaming m/mlx files.

▪ Warn when deleting a file that is used by

other files in the project.

▪ Update the MATLAB path when adding

models or code files to the project.

Automatically update files impacted by

renaming, removing and deleting

project files.

» slexPowerWindowStart

Rename, remove or delete a file from the project.

26

Dependency Analysis – Modular Development

Show model structure

List products required

Highlight issues

27

Highlight Missing Products Required by a Project

▪ Dependency analysis reports the

products required by a project

▪ Products that are not installed shown as

“(Missing)”.

▪ Files that use missing products show a

warning icon. Click the file to see the

missing products in the side panel.

▪ Open the model to get links to download

missing products

Find the products needed to use a

project

28

Using labels to share and store

information

29

Using Labels to Add Information to the Project

▪ Done lots of work to understand what the different parts are

▪ Wouldn’t it be nice to record that so others do not have to repeat this?

▪ What are labels?

▪ Apply some labels to the project

30

Simulink Project Labels

▪ Easily see and edit label data for all labels

attached to a file.

▪ Use drag and drop to add labels.

▪ Easily switch between single-valued labels.

Easily add, modify and view labels

attached to a file.

31

Note on Metadata

▪ What do we mean by metadata?

▪ Wikipedia: “Data about data”

▪ MathWorks: “Data about files”

▪ Data that is about the file, not (necessarily) part of it. For example:

▪ FuelType = Gas, Diesel

▪ ReleaseStatus = Research, Prototype, Production, Sunset

▪ SecurityClassification = Unclassified, Protected, Restricted, Confidential

▪ FileClassification = Design, Derived, Artefact

▪ TestedWith = R2010b, R2011a, R2011b, ...

▪ Coverage Metric = 84%

▪ Metadata can change without the file it relates to having to change.

Metadata

32

Labels + Dependency analysis = Impact Analysis

▪ “What is the impact of

changing the supervisory

control model?”

▪ “What tests do I need to run

to verify those changes?”

▪ All accessible from

command-line API for full

automation

33

More options for automation

34

Why Automate?

▪ Automated Processes Get Done

– Regularly (if needed)

– Repeatable

– Can be done by anyone

▪ Corollaries

– Manual processes are often infrequently done

– Can be subject to variation

– Perhaps only one person can do them

35

How can Automation in Simulink Project help?

▪ Now anyone can rebuild the S-Functions

– (or run the tests; generate code; publish the reports; import and validate test data; …)

– Even at 8:34pm on a Friday night; on a testing trip; …

▪ Groups help provide structure

– Group by type; or by job function (project manager group; testing group)

36

Automation Options in Simulink Projects

▪ Build-in “best practice” support

– Project Checks

– Growing list of our own “gotchas”

37

Run Custom Tasks and Create Reports

▪ Select custom functions and files more easily

▪ View sets of results side-by-side

▪ Generate reports from custom task results

▪ Note: Custom tasks were known as “batch

jobs” in releases before R2017a

Open custom task control from the toolstrip

» sldemo_slproject_batchjobs

Follow the feature slide best practices

and use slide as a starting point.

For Simulink code generation examples, don’t forget to

configure model using rtwconfiguredemo(model,‘ERT’,…)

http://inside.mathworks.com/wiki/Feature_Slide_Best_Practices

38

Example Custom Task

▪ Very small amount of code

required

▪ Common patterns

– Is this a file of type X?

– Does this file have a label

from category X with value Y?

39

Simulink Project API

▪ Easily access information for the project

▪ Add, remove, inspect files and labels

If under source control,

▪ See source control information for files

▪ Get the list of modified files

40

More options for sharing

41

Most Common Challenge in Sharing Work

“It works on my computer, just not on yours…”

Common causes:

▪ Incomplete set of files

▪ Different environment

– (software versions, MATLAB path, …)

▪ Wrong data loaded

▪ What do I do to get started?

?

42

Sharing work outside source control

Simulink Project has built in capabilities for sharing

▪ GitHub

– Collaborative sharing

– Expect to make changes together

▪ Archive file

– Fast sharing of “what I am doing now”

– “Delivery” workflows:

▪ Send a package of work

▪ Work independently

▪ Receive a package of work back

43

How much to share?

▪ Typically do not want to share all my project with a

supplier or customer

▪ Reduce to the minimum to

– Avoid sharing IP I want to keep in-house

– Keep it simple

▪ Create “Export Profiles” to manage which

files are exported from project

– Uses project labels to set up exclusion rules

– Set up many profiles for different workflows

▪ Sharing to supplier (share only what is needed)

▪ Share to customer (shield my IP)

▪ Share to HIL rig (no tests, doc, requirements)

▪ Etc.

44

Knowledge transfer

45

Model Templates

▪ Use shipped templates to get started with

building models or create custom templates to

from a Simulink model

– Avoid problem of corrupting original file

when creating a new model

▪ Avoid repetitive tasks when starting out to

build a new model

▪ Enforce a standard process for building

models for the entire team or organization

Build models using design patterns that

serve as starting points to solve common

problems

46

Projects can reference other projects

▪ Develop reusable components

using projects

▪ Flexible referencing:

– Relative

– Absolute

▪ Extract folders to referenced projects

▪ Deep hierarchies are supported

Componentize large

modelling projects

» sldemo_slproject_airframe_references

47

Include References in Templates for Sharing and

Reuse

▪ Start from a project with references

▪ Create a template including the references

▪ Save it on the MATLAB path or double click

it to see it in the start page

▪ Create a new project based on the template

Template with references

48

Summary

▪ Common challenges addressed!

– Structured/ Common Environment

– Graphical Dependency Analysis

– Source Control Integration

– Automation of common tasks

– Options for sharing work

– Parallel development workflows

– Knowledge retention

▪ Simulink Projects for efficient team collaboration workflows

▪ Try it Today!

49

Additional Resources

▪ Documentation

– Project Management

▪ Example

– Using a Simulink Project

▪ Tutorials

– Try Simulink Project Tools with the Airframe Project

– Create a New Project to Manage Existing Files

▪ Training

– Simulink Model Management and Architecture

▪ Consulting

– Proven Solutions from MathWorks Consulting Services

http://www.mathworks.com/help/simulink/project-management.html
http://www.mathworks.com/help/simulink/ug/try-simulink-project-tools-with-the-airframe-project.html
http://www.mathworks.com/help/simulink/ug/create-a-new-project-to-manage-existing-files.html
http://www.mathworks.com/services/training/courses/SLMB_1.html
http://www.mathworks.com/services/consulting/proven-solutions/

50

Support

51

Q & A

