
Model‐Based Design for Fuel 

System Development

Christopher Slack, Airbus

04 October 2017 



4th October 2017 MATLAB EXPO - Model‐Based Design for Fuel System Development2

17,287
Aircraft sold

60
Produced monthly

25,000+
Daily flights

10,561
Delivered

54,000
Employees

€49.2billion
Annual revenue*

6,726
Backlog

400
Operators



System Development Perimeter and Interfaces
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Towards Full MBSE
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System Requirement Authoring, Validation and Verification



Model Based Design Lifecycle
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Model Based Design - In Practice

Develop models to specify system functionality

–Describes behavioural & functional aspects

Details become the System (and Sub-System) 

Requirements

–Exercise the model to Validate 

Requirements

Delivered to Fuel System Supplier

–Model contains Requirements and intent

–Model execution provides system 

understanding

–Minimal Work to turn into Code

–Separate layer for independent validation
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MBSE – Functional System Requirements

• MATLAB/Simulink/Stateflow Application

• Development of Control System Reqts

–Normal and Failure Operating Modes

–Crew Procedures

• Control Logic separated from Aircraft Environ

–System Designers focus on 

– Control Functions

– HMI

– Robustness & Validation

–Specialist Modellers focus on:

– Aircraft & Environmental Simulation

– Physics (Fuel, Thermal)

– Auto-Test Capabilities
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MBSE – Stateflow for Requirements Authoring

• Aircraft Fuel System Statecharts:

• Linked Requirements

– System Requirements Documents Cascade

– Requirements Database (DOORS)

• Separate Chart for each Major A/C Function

– Allows for collaborative development

• Transition booleans calculated externally

– Input from Simulink

– Stateflow graphical function

• Driven behaviour of Stateflow logic separated from 

driving conditions

– Allows easier readability and testing
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Model Based Design - Reuse

• Integrated Desktop Simulator

– Requirements & Environment Model

– AutoCode using Simulink Coder

– Optional Interfaces to Cockpit Display & Flight Warning

• OCASIME, VIP & Aircraft -1

– Entire Software Simulation

– Interfaces Identical to Full Flight Simulator

• Aircraft-0 (Iron Bird)

– Cockpit Avionics & Displays

– Integrated of Real & Simulated Systems

– Virtual Hosting of Supplier’s Code

• Full Flight Simulator

– Single model for all platforms

– Training Flight and Ground Crews
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• Model V&V has to go through several loops

– When the model is the requirements, the distinction 

between “Model Verification” and “Requirements 

Validation” is somewhat blurred

If a test fails, what is at fault? 

– the requirement?

– the model?

– the test?

Model Development Test/Verification/Validation Cycle
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Using Simscape to Model A350 Refuel System
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Component export, parameter estimation

And model simplification for Real Time performance



Use of Simscape

• Fuel Design Model Developed in Flowmaster

– Architecture and Component Performance

– Spec Model Only - not real-time

– Cannot produce C-Code or embedded simulations

• Exploiting new SimHydraulics Toolbox

• Mathworks Consultancy

– Airbus provision of core models and perf data

– Majority of development by Mathworks
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Flowmaster Diagram



Component Development

• Mapping of Flowmaster components to 

Simscape/ SimHydraulics equivalents

– Most 1:1 equivalents

– Some required customisation from base library

• Curve Fitting Toolbox 

– Fit source data to SimHydraulics block equations

– Saved as Matlab Script for re-use
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Library Construction and Parameterisation
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Component Library
System Library

System Palette

• Component Library to customise standard 

Hydraulic Library Components

• System Library contains “System Level” 

Components

• Each System Palette contains Multiple 

Components

– E.g. There are several different type of pumps

• System Palette constructed using MATLAB 

scripts

– Self Documenting

– Re-run if design model updated



Model Simplification

• Design Model has ~900 individual Components

– A reduction of the number of blocks by a factor of 10 can potentially yield a simulation speed improvement by a factor of 1,000.

• Reduction Strategies

– Reduce multiple serially Connected Pipes/Bends/Losses to a single Equivalent pipe/loss combination

• Design Optimisation toolbox

– Established Equivalent Parameters

• Reduction in the number of components

– Pipe components reduced from 290 to 60

– Total Components reduced from 900 to 170

– So would expect ~120 x speed-up
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Model Reduction

• During Refuel or Defuel, certain valves are not in use

– Fluid network behind those closed valves do not contribute to pressure/flow calculations

– Therefore can be removed

• This can be repeated for each combination of tank that needs to be studied.

– The reduced model can be constructed automatically with MATLAB scripts that analysis network topology.
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Simscape Summary of Results

• Two system-level models of the Defuel system created in 

SimHydraulics

– One complete: all components required to model the system 

behaviour included

– One simplified: all “isolated” components located behind closed 

valves removed

• Performance of the simplified model sufficient for real-time

– Tested with Simulink Real Time on industrial PC

• Performance of the complete model not sufficient for real-time 

implementation, despite simplifications made.

– Depends on the solver chosen to a large extent

– Improves substantially from with later Simscape versions

– Near real-time performance in exploiting Simscape local solver

• New blocks and demos added to SimHydraulics as a direct result of this 

work
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Code Efficiencies and Performance Enhancement
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Fuel Temperature Prediction Software



Fuel Temperature Prediction for Airlines
An Exercise in Code Efficiencies

• Low outside temperatures with long exposure times

• Fuel temperature may drop close to or below freezing point

– Software written in MATLAB

– Predict fuel temperatures given Flight Profiles & Global Air 

Temperatures.
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Fuel Temperature Prediction for Airlines
An Exercise in Code Efficiencies
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Using MATLAB Profiler to Identify Code Efficiency Bottlenecks

• Exploit MATLAB Profiler

• Built into MATLAB

profile on ; run program ; profile viewer

• Creates timing profiles of every function called

• Look at the “Self Time” for time spent within function

• Profile Report highlights most expensive L.O.C.

• Iterative process to increase code efficiencies.
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Code Optimisation Strategies

• Equation Vectorisation

• Loop Unrolling

• Switch…case statements

– Reduce volume of code inside each “case”

• Use c-mex for time-critical functions

– Check target platforms

• Minimise Globals

– Very slow in MATLAB

• Reduce calculations inside for loops

– Pre-calculate invariant parts of equations
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Keeping Track of Mathworks Release Cycles
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Industry Model Testing



Industry Model & Code Testing

• Aircraft Development 3-5 years, Mathworks upgrades every 6 months
– One solution to reduce cost of (continuing) upgrade cycles

• Testing infrastructure utilising customer models and MATLAB scripts

– Release Compatibility

– Performance

Win-Win Situation:

• Value to Customers

– Reduced product upgrade cost

– Increased productivity

– Early knowledge of regression

• Value to Mathworks

– Compatibility testing

– Performance testing

– Increased tool adoption
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IDLE= ...
IRP_MODE[IRP_OFF] & ...
~IRP_MODE[IRP_MANUAL_REFUEL] & ...
~IRP_MODE[IRP_AUTO_REFUEL] & ...
~IRP_MODE[IRP_TRANSFER] & ...
~IRP_MODE[IRP_DEFUEL] &...
~SOT_INITIATED &...
~GND_SURGE_RELIEF_ACTIVE;

MR= ...
IRP_MODE[IRP_MANUAL_REFUEL] & ...
~IRP_MODE[IRP_DEFUEL] & ...
~IRP_MODE[IRP_AUTO_REFUEL] & ...
~IRP_MODE[IRP_TRANSFER] & ...
~IRP_MODE[IRP_OFF] &...
~SOT_INITIATED;

FAULT= ...
~AR & ~XFER & ~DF & ~IDLE & ~MR;
}

Models

GUIs

Tests & Results

Models

Secure Models 

Server

ITAR Rated Firewall
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Lessons Learnt

• Deployment of MBSE

– As much about Competences as Technologies

– Skillsets &  Mindsets

– Integration of Functional & Non-Functional models

• Model Build Reveals Emergent Properties

– Validation for free

– System difficult to model will be difficult to build/test

• Validation/Verification Testing

– A test that is more complex than that being tested is 

probably wrong

– Easy to be caught in the trap of “Test for Success”

– Testing for intentional but not unintentional 

behaviour

– Automated Test/Analysis allows regression testing

– Formal Proof more thorough than test scripts
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• System Designers Focus on Designing the System

– The System Model is the System Requirements

– Extra functionality required to exercise the model are not 

requirements

– Need to clearly identify what are requirements and what 

are the extras

• Model Architecture

– Must match System Architecture

– Also conducive to multi-team development

• Easy for Designers can be Difficult for Simulators

– Engineers can be very “ingenious”

– Break downstream processes

– Model exchange with suppliers

– Automatic code generators

– Require adherence to Style Guidelines and Design Patterns



Thank you
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