

An MBD Adoption Story from Bombardier Transportation

Matlab Expo 2018 Erik Simonson Head of Propulsion Control 23rd May 2018 VAGSCNE1E18007 Public

Agenda

1	Bombardier Transportation, Propulsion & Controls	I
2	Challenges	– Revdraft .ı
3	Adopting MBD	y 23 rd 2018 . MEIDENTIA
4	Results	VPME – May
5	Questions	Ison – ROC
6		Erik Simon
7		

Bombardier Transportation mobility solutions The broadest portfolio in the rail industry

Propulsion & Controls Scope of Delivery

BOMBARDIER

- Rev. _draft_

Erik Simonson – ROQ/PME – May 23rd 2018 – Rev. _draft. PRIVATE AND CONFIDENTIAL © Bombardier Inc. or its subsidiaries. All rights reserved.

The Challenge Late Verification

- Complex systems, prone to faults
- Faults detected too late, thus the cost to correct them has been too high
- Roughly 50 people are involved in any project spread over 10 different teams
- The organization has been highly dependent on a few very skilled employees
- Our lead time has been too long

Conclusion

Too many faults detected too late, involving too many people driving lead time too far \rightarrow The cost has been too high.

The First Steps Exploring MBD

2013: 120 hours prestudy as part of a process improvement work package

- We learned that we can detect and correct design errors earlier and more quickly
- We learned that Matlab/Simulink is a strong contender
- A seminar arranged by Mathworks introduced MBD to Propulsion Control

2014: 1 MSEK investment

- 60% spent on creating "base" models, 15% on training and 15% on licenses
- 10% spent on mitigating identified risks in a real customer order project
- Results
 - One electrical design issue was located ahead of first train being assembled,
 - Iterated a complete system design early, saving lead time for the project
 - Altogether the savings were larger than the investment (ROI slightly above 100%)

Risk Centric Modelling

- All deliverables in the project are in traditional format (textual design, manual implementation, electrical circuits in visio etc)
- High risk areas of the project are mitigated through modelling, results will be incorporated into the traditional format

Model Based Design

- Key deliverabels in the project are derived from the models (software design, code and electrical circuits)
- With parts of the system being modelled, high-risk areas can be effectively mitigated with low effort

Use Case: Automatic Code Generation in PowerLab (2017)

Software Quality Right from day 1

Problems resolved in PowerLab have mostly been related to incorrect wiring.

Lessons Learned: Ensure that you have ability to debug on target!

2017-2018: We chose a small project, rationale being to focus on process change

- Software is generated from model
- Electrical main circuit is defined by the model

Lessons learned:

- The project must actually plan for early verification (i.e. update standard deliverables list).
- Underestimated the work going from a quick & dirty model, to a model fullfilling all formal requirements (configuration management, debug on target, test strategies, functional safety etc.)
- Main Circuit Design: The electrical part of the model has to "look & feel" like a traditional electrical schematics if you want the electrical and system teams to embrace the new method.

- There is a whitepaper*, I can confirm it is correct & valid also for Bombardier
- We have been fortunate in having quite a few different people actively embracing and driving the change
 - Such a team is imperative in a bottom-up MBD adoption
 - Such a team can go through the "change curve", the risk is to lose remaining organization
 -the imperative in enabling the change must be balanced towards also ensuring the entire organization to be onboard

DO NOT UNDERESTIMATE THE CHANGE!!!

- Rev. _draft_

served.

Result from 2017 Use Case: New Complex Function

35 % Lead Time Reduction

Status 2018 Work in Progress & Outlook

Update of the software process is in the works First alpha-baseline of model

- Tested in February in PowerLab
- Launch in real order project planned second half of 2018
 - Complient with Safety Integrity Level 2 according to safety norms

System Modelling & Verification

- We expect the largest gains here
- Including all three departments is in a developing phase
- 10 Different teams must coordinate their efforts and define a joint process

Communicate Results Monitor, Learn & Report

- First investment in 2014 was monitored from a business perspective (ROI) & and a report was compiled.
- Publish articles, reports & results on Company Intranet
-and of course share your learning on Matlab Expo! ☺

BOMBARDIER *careers.bombardier.com*

