
Reuse of Simulink Components
within Chip-Level Design and
Verification Environments

Simone Saracino

simone.saracino@st.com

Diego Alagna

diego.alagna@st.com

Agenda

1 Introduction

2 System-level design model

3 System-level verification

4 Reuse of system-level
verification IPs within the UVM
testbench

5
Reuse of system-level
design model

6
Results and future
enhancements

7 Conclusions

2

Introduction

Introduction

• The number of transistors doubles
every two years

• Moore’s law slowing down over the
last decade

• Market requirements more and more
aggressive
• Performance, cost, time-to-market

• Architectural optimizations are key to
drive IC enhancements

ST Automotive and Discrete Group - Smart Power R&D

Architectural Optimizations

• Enhance system-level architectural exploration

• Simulation

• Analysis

• Verification (also reduces bug lead time!)

• Reuse system-level collaterals within the rest of the design flow

• Avoids overall additional effort

SPEC
SYSTEM LEVEL
DEFINITION AND
VERIFICATION

CHIP LEVEL
DESIGN AND

VERIFICATION

SILICON
IMPLEMENTATION

System-level design model

uC

Voltage

Input

SIGMA

DELTA

DECIMATOR

+ FILTERING

I2C I/F

OTHER

LOGIC
OTHER

LOGIC

OTHER

LOGIC
OTHER

ANALOG

INPUT

Stage

SIGMA DELTA

MODULATOR

Digital domain
TOP_CHIP

DUT

System-level design model

System-level design model

• Device Under Test (DUT, Main Measurement Unit) is modeled and verified using
Simulink platform

• Model includes both analog and digital components
• Voltage input is modeled as ideal voltage generator

• The analog blocks are modeled using real numbers in discrete-time domain with high sample rate
compared to digital clock

• Digital blocks are modeled in a fixed-point, bit-accurate and cycle-accurate way

• The rest of the IC components are not included in the system-level Simulink
model

• I2C interface is implemented with ST standard circuits

System-level verification

System-level testbench

• Allows DUT verification before its corresponding RTL code and SPICE

netlist are available

DUTSEQUENCE / STIMULI SCOREBOARD / MONITOR

Stimuli block

System-level stimuli

• Stimuli block drives the following DUT inputs

• Analog voltage input (real number)

• Configuration parameters («control from I2C for ADC» box in the fig)

• Digital correction for ADC errors («control from memory» box in the fig)

• Debug configuration («control from SPI» box in the fig)

• DUT inputs are constants except for the Vin and the ADC’s enable signal

• Parametrized stimuli are not randomized (future enh.)

Scoreboard

• Scoreboard is a verification component that contains checkers and verifies the

functionality of a design

• Functional checks in the system-level verification

Assertion

• UVM assertion is a check embedded in verification, that validates the behavior of

design during simulation

• Use Assertion Simulink component to:

• Assert a simulation error during system-level verification

• Insert an uvm_error in chip-level environment

Reuse of system-level verification IPs
within the UVM testbench

What is UVM?

• UVM (Universal Verification Methodology) is a standard methodology for IC verification

• Advantages:

• Modular verification IP

• Reusable verification environments

• Scalable testbench structures

• Reference: https://www.chipverify.com/uvm/uvm-tutorial

DUT

Testbench based on UVM approachTestbench based on classic SV approach

https://www.chipverify.com/uvm/uvm-tutorial

Reuse of system-level verification IPs

• The system-level verification test cases need to be re-run at chip level

• System-level testbench reused using Simulink UVM generation

• HDL Verifier (MathWorks tool)

• Avoid duplication of effort

• Simulink DUT doesn’t correspond to full IC: adaptations needed

Generated UVM files

UVM testbench generation

• Generated UVM testbench is a stand-alone verification environment

• In case DUT corresponds to full IC, it is possible to use it without modifications

• Simulink generates also UVM behavioral model for DUT

• Ignored in our chip-level verification environment

• Used RTL generation for digital portions, Verilog models for analog ones

• Each testcase corresponds to a single sequence

• To generate a single sequence, it is necessary to generate the full UVM testbench

environment

• To have a good verification coverage, it needs a lots of sequences

Digital chip-level testbench environment

SIGMA DELTA

DECIMATOR

+ FILTERING

I2C I/F

OTHER

LOGIC
OTHER

LOGIC

OTHER

LOGIC
OTHER

ANALOG

INPUT

Stage

SIGMA DELTA

MODULATOR

Digital domain

TOP_CHIP

DUT

In
te

rf
a
c
e
s

TEST
UVM_ENV

S
e
q
u
e
n
c
e
r

D
ri
v
e

r
M

o
n
it
o
r

UVM_AGEN

T

REG_MAP

S
e
q
u
e
n
c
e
r

R
e

g

m
o

d
e

l

D
U

T
IF

SCOREBOARD

mw_DUT_agent

Sequence

r D
ri
v
e
r

M
o
n
it
o
r_

 i
n
p

M
o
n
it
o
r

Predictor

Scoreboar

d

VIN

S
e
q
u

e
n
c
e

S
e
q
u

e
n
c
e
s

start

Integration of generated UVM components & objects

• Some manual modifications are needed to integrate the UVM components

generated from Simulink within the chip-level UVM testbench:

• Adapt files generated to UVM environment

• Insert an interface decoder to sniff the output of DUTIF to generate existing high level

transactions

• Trigger insertion to synchronize the start of generated sequence with the starting time at

system level

Reuse of system-level design model

uC

Voltage

Input
SIGMA DELTA

DECIMATOR

+ FILTERING

I2C I/F

OTHER LOGICOTHER LOGICOTHER LOGICOTHER ANALOG

INPUT

Stage

SIGMA DELTA

MODULATOR

Digital domain
TOP_CHIP

DUT

System-level design model

RTL code generation

• RTL (Register-Transfer Level) is a design abstraction which models a synchronous

digital circuit.

• A synthesis tool is able to generate the real schematic starting from RTL

• Reuse also for digital part system-level design model (green block in the figure)

• Simulink add-on “HDL Coder” generates RTL code

• Both Simulink testbench components and design models are reused at chip-level

Code snapshot

RTL code generation - Advantages

• Avoid human errors in converting Simulink models to RTL

• Ensure alignment between Simulink and RTL simulation

• Bug fix at system-level model

• Improvement workflow efficiency

Results and future enhancements

Results

• RTL verification time cut in half

• Avoided duplication of effort between system-level and RTL-level verification

• Saved RTL coding time, reduced chance of human errors within RTL

• Single source of test cases and design models

Future Enhancements

• Simplify integration of generated UVM components within chip-level environment

• Test case management, options

• Multiple Simulink testbenches

• Simulink parametrization, different scenarios from the same testbench

• Randomization, options

• At Simulink level

• Introduced after UVM generation

Conclusions

Conclusions

• Shift-left untimed and loosely-timed portions of verification

• Moving them to system-level

• Avoid duplication of effort

• Reuse system-level verification IPs within RTL environment

• Reuse system-level design models, converting them to RTL

• Early detect bugs, such as

• Functional and performance issues in algorithms, state machines, etc.

• Poor interactions between domains

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries.

For additional information about ST trademarks, please refer to www.st.com/trademarks.

All other product or service names are the property of their respective owners.

Find out more at www.st.com

http://www.st.com/trademarks
http://www.st.com/

