Rapid Prototyping Embedded Designs using NXP Model-Based Design Toolbox: A Battery Management System System Application

Irina Costachescu

Marius-Lucian Andrei
AGENDA

1. NXP Ecosystem

2. NXP’s Model-Based Design Toolbox Introduction

3. Model-Based Design Toolbox for Battery Management Systems
Together with our valued customers, we’re not just advancing technology, we’re advancing society.

60 years of combined experience and expertise
Operations in more than 30 countries worldwide
Approximately 31,000 employees
Headquarters in The Netherlands – Eindhoven

AUTOMOTIVE
Enabling carmakers to develop smarter solutions for complex autonomy, connectivity, and electrification challenges
Accelerating the shift to greater mobility

INDUSTRIAL
Reducing wasted time, money, and effort by helping business run more efficiently.
Enabling more efficient data processing

MOBILE
Giving wearable and mobile devices easier access to the services that make modern life more convenient without compromising security and safety.
Transforming how people and devices connect

SMART HOME
Solutions that listen, learn, and adapt into the places we call home for more comfort, affordability, safety, and convenience.
Powering the intelligence behind the technologies

SMART CITY
Simplifying how people access and interact with local services to achieve new standards of sustainability, efficiency, mobility, and economic growth.
Anticipating the demands of tomorrow

COMMUNICATION INFRASTRUCTURE
Powering insights and inspiring performance with hardware solutions for handling 5G connectivity across the emerging communications spectrum.
Delivering real-time responsiveness at the speed of 5G
NXP ECOSYSTEM

DRIVERS, MIDDLEWARE, LIBRARIES

• Simplify hardware access by using hardware optimized software

BUILD, DEBUG, CONFIGURATION TOOLS
BUILD, DEBUG, CONFIGURATION TOOLS
NXP ECOSYSTEM

DRIVERS, MIDDLEWARE, LIBRARIES

- Simplify hardware access by using hardware optimized software

BUILD, DEBUG, CONFIGURATION TOOLS

- Application development inside an IDE
- Build Tools, Debug Tools and Configuration Tools integrated within the IDE
- Drivers, Middleware and Libraries configuration and initialization in a graphical environment

REAL TIME MONITOR, DEMO TOOLS
REAL TIME MONITOR, DEMO TOOLS
NXP ECOSYSTEM

DRIVERS, MIDDLEWARE, LIBRARIES

• Simplify hardware access by using hardware optimized software

BUILD, DEBUG, CONFIGURATION TOOLS

• Application development inside an IDE

• Build Tools, Debug Tools and Configuration Tools integrated within the IDE

• Drivers, Middleware and Libraries configuration and initialization in a graphical environment

REAL TIME MONITOR, DEMO TOOLS

• Check the status of the running on target application in real time using FreeMASTER

• Write and read variables, registers, memory locations

• Monitor signals on the embedded target

• Fast demo design
FROM IDEA TO APPLICATION

DRIVERS, MIDDLEWARE, LIBRARIES
- Simplify hardware access by using hardware optimized software

BUILD, DEBUG, CONFIGURATION TOOLS
- Application development inside an IDE
- Build Tools, Debug Tools and Configuration Tools integrated within the IDE
- Drivers, Middleware and Libraries configuration and initialization in a graphical environment

REAL TIME MONITOR, DEMO TOOLS
- Check the status of the running on target application in real time using FreeMASTER
- Write and read variables, registers, memory locations
- Monitor signals on the embedded target
- Fast demo design
MODEL-BASED DESIGN

MODEL-BASED DESIGN TOOLBOX

- Collection of Drivers, Libraries and Tools
- Embedded systems design and deployment on NXP MCUs directly from Simulink

MATHWORKS ECOSYSTEM MATLAB/SIMULINK

- Model-Based Design
- Simulation
- Automatic Code Generation
- Verification and Validation
FROM IDEA TO APPLICATION

- Design
- Prototype
- Test
- Deploy

MODEL-BASED DESIGN TOOLBOX

- Collection of Drivers, Libraries and Tools
- Embedded systems design and deployment on NXP MCUs directly from Simulink

MATHWORKS ECOSYSTEM MATLAB/SIMULINK

- Model-Based Design
- Simulation
- Automatic Code Generation
- Verification and Validation
FROM IDEA TO APPLICATION

- FAST – Time To Market
- Hardware independent simulations
- Easy To Use-Reuse

MODEL-BASED DESIGN TOOLBOX
- Collection of Drivers, Libraries and Tools
- Embedded systems design and deployment on NXP MCUs directly from Simulink

MATHWORKS ECOSYSTEM MATLAB/SIMULINK
- Model-Based Design
- Simulation
- Automatic Code Generation
- Verification and Validation
MODEL-BASED DESIGN TOOLBOX – SOFTWARE DEVELOPMENT ENVIRONMENT AND MODULES

- Stateflow
- Simscape
- Motor Control Blockset
- AUTOSAR Blockset
- Deep Learning Toolbox
- Vehicle Network Toolbox
MCU Peripherals Configuration & Control using NXP’s Real-Time Drivers (RTD) / Software Development Kit (SDK) APIs

External Tools integration for peripherals, pins and clocks configuration; Build Tools

MBDT blocks generate code on top of RTD/SDK

Example applications covering all the toolbox features and functionalities

* AMMCLIB – Automotive Math and Motor Control Library
BATTERY MANAGEMENT SYSTEM – DEVELOPMENT FLOW WITH MATHWORKS AND NXP
MODEL-BASED DESIGN DEVELOPMENT FLOW

Idea Incubation

PC Environment

Step 1 – System Requirements

Model-in-the-Loop
- Software requirements
- Control system requirements
- Overall application control strategy
IDEA INCUBATION
MODEL-IN-THE-LOOP

Model-in-the-Loop

• Software requirements
• Control system requirements
• Overall application control strategy
• Model testing
MODEL-BASED DESIGN DEVELOPMENT FLOW

Idea Incubation

Step 1 – System Requirements
Model-in-the-Loop
- Software requirements
- Control system requirements
- Overall application control strategy

Automatic Code Generation

Step 2 – Modeling/Simulation
Software-in-the-Loop
- Control algorithm design
- Code generation preparation
- Control system design
- Start testing implementation approach
SIL

Software-in-the-Loop

- Control algorithm design
- Code generation preparation
- Control system design
- Start testing implementation approach
MODEL-BASED DESIGN DEVELOPMENT FLOW

Idea Incubation
- BMS Model
- Battery Model

Automatic Code Generation
- BMS Code
- Battery Model

Code Validation
- BMS Controller Code
- Battery Model

Step 1 – System Requirements

Model-in-the-Loop
- Software requirements
- Control system requirements
- Overall application control strategy

Step 2 – Modeling/Simulation

Software-in-the-Loop
- Control algorithm design
- Code generation preparation
- Control system design
- Start testing implementation approach

Step 3 – Rapid Prototype

Processor-in-the-Loop
- Controller code generation
- Determine execution time on MCU
- Verify algorithm on MCU
- Check memory/stack usage on MCU
Processor-in-the-Loop

- Controller code generation
- Determine execution time on MCU
- Verify Algorithm on MCU
- Check memory/stack usage on MCU
MODEL-BASED DESIGN DEVELOPMENT FLOW

Step 1 – System Requirements
Model-in-the-Loop
- Software requirements
- Control system requirements
- Overall application control strategy

Step 2 – Modeling/Simulation
Software-in-the-Loop
- Control algorithm design
- Code generation preparation
- Control system design
- Start testing implementation approach

Step 3 – Rapid Prototype
Processor-in-the-Loop
- Controller code generation
- Determine execution time on MCU
- Verify algorithm on MCU
- Check memory/stack usage on MCU

Step 4 – Target MCU Implementation
MCU Final Application
- Validation/verification phase
- Controller code generation
- Test system in target environment using tools for data logging and parameter tuning

To SIL
To PIL
To MCU
BMS Controller Code
Real Batteries
BMS Model
Battery Model
BMS Controller Code
Battery Model
BMS Code
Battery Model
PC Environment
PC Environment
MCU with Embedded Control Module (ECM)
Images presented are for illustration purposes only and may not be an exact representation of the product – their purpose is just exemplification of a concept.
BMS RAPID PROTOTYPING - MBDT ENVIRONMENT

Images presented are for illustration purposes only and may not be an exact representation of the product – their purpose is just exemplification of a concept.
ADDITIONAL RESOURCES & SUPPORT

MBDT Beginner’s Guide
W1: MBDT Introduction
W2: How-To SPI
W3: How-To CAN
W4: How-To PWM
W5: How-To LIN
W6: How-To PIL
W7: How-To Timers

Co-hosted Webinars
Motor Control: S32K
Motor Control: i.MX RT
Motor Control: BLDC/PMSM
Motor Control: Design Application
Code Generation and Verification
Speed Up Applications
Development with MBDT
AUTOSAR SW on S32K1/MPC
AUTOSAR SW on S32K3
Deploying BMS algorithm on S32K1
Deploying Deep Learning SOC algorithm on S32K3
Vision
FreeMASTER

PMSM Control Workshop
Course Main Page
M1: Environment Setup
M2: PMSM and FOC
M3: System Partitioning
M4: PWM Modulation
M5: V/f Scalar Control
M6: Current Sensing
M7: Torque Control
M8: Speed Control
M9: Position Observer
M10: Sensorless Speed Control

BLDC Control Workshop
Course Main Page
1. Introduction
2. Application Partitioning
3. Input Commands
4. BLDC Motor Theory
5. Hall Sensors
6. Commutation
7. Commutation Algorithm
8. Power Stage Config
9. Open Loop Control
10. Speed Estimator
11. Closed Loop Control
12. Motor Control System
Thank you