FUEL CELL SYSTEMS
THE CHALLENGE OF MULTIPHYSICS SIMULATION
Fuel Cell Systems
The Challenge of Multiphysics Simulation

M.Eng. Erik Hartmann; M.Eng. Nils Rohde; M.Sc. Vimal Muthusamy; Dr.-Ing. Stephan Schnorpfeil;
SEGULA Technologies GmbH, Rüsselsheim, Germany

Special Thanks To
Erin McGarrity,
Eva Pelster
from MathWorks
Agenda

- Motivation
- Fuel Cell System
- Development and Simulation Approach
- Challenges
- Summary and Outlook
Motivation

- Our Goal = Proof of Concept
 - Specify “Balance of Plant” (BoP) components of a complete fuel cell system
 - Provide control strategies
 - Support software development with Co-Simulation → provide initial calibration for test bench
 - Acceptable simulation performance
 - Use MathWorks environment → MATLAB/ Simulink/ Simscape/ Stateflow

- Status at project start
 - Basic Simscape model from MathWorks used
Fuel Cell Systems
THE CHALLENGE OF MULTIPHYSICS SIMULATION

Motivation

- Why Fuel Cell?
 - Sustainable Mobility
 - CO2 fleet target
 - High average power demands
 - Short charging time requirements
 - Continuous operation demand
 - Payload critical applications
 - Weight critical applications

Requirements - Fuel Cell

→ Competitive TCO (Total Costs of Ownership)
→ Holistic approach – Modularity, scaling
Fuel Cell Systems
A CHALLENGE OF MULTIPHYSICAL SIMULATIONS

Fuel Cell System – Physical Domains/ Subsystems

- Thermo-Fluids
 - Hydrogen supply (Anode)
 - Air supply (Cathode)
 - Low and high temperature coolant circuit

- Electrical
 - Low & high voltage system

- Mechanical
 - Compressor, Pumps

- Controls
Fuel Cell Systems
THE CHALLENGE OF MULTIPHYSICS SIMULATION

Development/ Simulation Approach

System Definition

Subsystem

Module

System

Vehicle

System Testing

Subsystem Testing

Module Testing

System Testing

Approval

Target Confirmation

System Verification
Fuel Cell Systems
THE CHALLENGE OF MULTIPHYSICS SIMULATION

Development/ Simulation Approach

Vehicle

Targets
- Speed, Acceleration
- Drive cycles
- Range

Fuel Cell System

Fuel economy
- Pay load
- Driving performance (e.g. power-weight ratio)

Subsystem

Module

System Definition
Fuel Cell Systems
THE CHALLENGE OF MULTIPHYSICS SIMULATION

Development/ Simulation Approach

- Requirements to powertrain
 - Power output
 - Transient behavior
 - Operating strategy
- Vehicle integration
- Tank capacity

System Definition

Vehicle
Fuel Cell System
Subsystem
Module

Load Follower
Range Extender
Fuel Cell Systems
THE CHALLENGE OF MULTIPHYSICS SIMULATION

Development/ Simulation Approach

- Requirements to subsystem
 - How to achieve the required system power?
 - Which components are needed, e.g. compressor?
 - Layout of subsystem circuits
Development/ Simulation Approach

- **Vehicle**
- **Fuel Cell System**
- **Subsystem**
- **Module**

- **Stack requirements**
 - Electrical Load
 - Operating Temperature
 - Anode/Cathode Pressure

- **Requirements of BoP components**
 - Air delivery → compressor, charge air cooler
 - H2 delivery → tank capacity, jet pump, blower
 - thermal subsystems → radiators, pump size
Fuel Cell Systems
THE CHALLENGE OF MULTIPHYSICS SIMULATION

Development/ Simulation Approach

- Test harness for BoP components
- Use fixed in- and outputs
- Calibrate to stack requirements
- Component supplier sourcing
- Use referenced models
Challenges: Jet pump

- Supersonic conditions at primary nozzle
 - Additional math required to avoid supersonic conditions, (only supported through customizations)

- Overdetermined system
 - Information transfer between stack inlet, outlet and recirculation path
 - Reduce complexity
 - Modularize physical system model (moist air) and calculate them individually

- Purging interferes with “usual operation” (recirculation) – breaking the algebraic loop
 - Purge path into exhaust parallel to recirculation path
 - Additional math required
Fuel Cell Systems
THE CHALLENGE OF MULTIPHYSICS SIMULATION

Challenges: Passive Humidifier

- Water transport
 - create piping enabling transport from wet side to dry side
 - removal of transferred water vapor from wet side
- Thermal coupling
 - coupling of wet and dry side to improve accuracy of simulation
- Bypass design
 - modelling of local restrictions in terms of pressure drop
 - sizing of passive bypass throttle to maintain a specific mass flow
Fuel Cell Systems
THE CHALLENGE OF MULTIPHYSICS SIMULATION

Challenges: Controls/ Co-Simulation

- Fixed time step – model discretization
 - Performance-accuracy tradeoff (optimal time step)
- Continuous ↔ Discrete domains
- Tuning gains in cascaded controller
 - Cascaded control architecture
 - Sampling time selection
- Continuous development of plant environment
 - Integration through reference subsystems
Fuel Cell Systems
THE CHALLENGE OF MULTIPHYSICS SIMULATION

Summary and Outlook

Summary:
- Model accuracy improved
- Control strategies implemented
- Deeper understanding of Simscape modeling & troubleshooting thanks to MathWorks support

Outlook:
- Validate model with fuel cell test bench data
- Increase flexibility by using referenced/variant models for component selection
- Move from moist-air to a custom multi-species domain in Simscape to track more species, like N2, O2, H2...
THANKS