Autonomous Co-working Robot Development with Multimodal Control based on Model-Based Design

Kazuki Ono
May, 2022
Agenda

1. Introduction

2. Software Development Kit (SDK) for Robot-Hand Control System

3. Overview of Robot-Hand Development using Model-Based Design (MBD) and MATLAB® Tools

4. Construction of Controllable Multimodal Robot System

5. Impression and Conclusion
1. Introduction
1.1 Initiatives for Multimodal Autonomous Co-working Robot System

An adaptive reactive system which capable of multimodal interactions and changes dynamically in response to external environment (i.e. self-modification feature)
1.2 Background of Co-working Robot Applications

Social Challenges:

+ Shrinking workforce caused by aging and declining population

+ Diverse customer demands

Choosing an end effector is critical to manage multiple and diverse customer demands
1.3 Background of Robot Hand Development

No practical application of a general-purpose hand that can replace human hand to perform any task. Generally, robot hand development is required for each specific task.

Problem:
A great amount of time and resources are required

Rapid robot hand development system is necessary to satisfy diverse customer demands
1.4 Our proposal: Software Dev. Kit (SDK) for Robot Hand Control System

By using our proposed SDK, we believe that we will be able to develop this robot hand systems efficiently and respond quickly to diverse customer demands.
+ By using MBD, front-loading the designing process can be done which then improves the design quality.
+ Also, robustness can be estimated by considering variations and noise in virtual environment.
 Since there will be less “Rework” than before, development costs and resources can also be cut down.
2. Software Development Kit (SDK) for Robot Hand Control System
2.1 Features of SDK for Robot Hand Development

- The SDK is divided into DSD-A part, which performs sensor processing and controls actuators such as motors, and OS part, which manages other applications.
- The DSD-A and OS parts exchange information via common memory.
- DSD-A part handles the design of control software related to the hardware configuration, such as the type of sensors or motor control, used and modified according to customer needs.

Customer demands

SDK (Under development)
2.2 Robot Hand Dev. Process using DSD-A in SDK Environment

- DSD-A part can be described by Simulink and has a common architecture in real and virtual environments.

Customer demands

Want that!

Need this!

Want this!

Designing robot hand systems in virtual environment

+ C/C++ code generation

Implementation

© 2022 KYOCERA Corporation.
2.3 Features of Discrete State Driven-Architecture (DSD-A)
-Task Definitions and Discrete Periodic Processing

DSD-A part consists of multiple tasks

- The sensors and actuators mounted on the robot hand are defined as task. For example, Actuator 1 is defined as Task 0, Sensor 1 as Task 1, Sensor 2 as Task 2, etc.
- Each task is activated by periodic interrupts
2.4 Features of Discrete State Driven-Architecture (DSD-A)
-State-Driven Control and Real-Time Assurance

+ The program is divided for each possible state of the actuators and sensor. Also, as the status transition from one to another periodically, the processing time of the program can be controlled, thus real-time processing can be assured.
2.5 Summary of SDK and DSD-A for Robot Hand Development

+ By using our proposed SDK, we believe that we will be able to develop this robot hand systems efficiently.
Also, since DSD-A has common architecture in both real and virtual environments, it is possible to seamlessly implement the content designed in the virtual environment on to microcomputer.
+ With DSD-A, real-time processing can be assured.
3. Overview of Robot-Hand Development using Model-Based Design (MBD) and MATLAB® Tools
3.1 Robot Hand System Block Configuration

Robot Hand System

Robot hand system that enables stroke-width control of parallel-chuck robot finger by acquiring real-time information of velocity and contact force.

Task0: Motor control
Task1: Contact force data processing

Simulink®

Contact force

Parallel-chuck hand

Simscape Multibody™

Force feedback system

© 2022 KYOCERA Corporation.
3.2 Plant Modeling

The robot hand components drawn in the block diagram are modeled by Simulink® and Simscape™ Multibody™. For example, a contact force model can be expressed using a contact force block. DSD-A is described by Stateflow®, and task scheduling and control system design are performed.
3.3 DSD-A Design -Target Setting-

Target setting of control cycle and processing time

DSD-A Design Items:
(Example)
- Control cycle : 500µsec
- Target processing time : 50µsec
- Processing time interval : 125µsec

DSD - A Design Items:
・Control cycle : 500µsec
・Target processing time : 50µsec
・Processing time interval : 125µsec

© 2022 KYOCERA Corporation.
3.4 DSD-A Design –Assigning States–

Assigning states to motor control

Ex. Case of velocity feedback control

Velocity profile of motor

Simulink®

Assign states to DSD-A based on state transitions

Assign Task 1 (Contact Force Data Processing)

Ref: Motor velocity control state transition

© 2022 KYOCERA Corporation.
3.5 DSD-A Design -Velocity feedback controller design-

- Design the control system with DSD-A
- The control system can be designed to include sampling frequency and dead time
- Use Simulink Linear Analysis tools to easily generate Bode diagram
3.6 Verification - Velocity control system

Verification of speed control step response

Input step signal

Velocity feedback system

Step signal (Target)

Time constant: 3msec

Check if it matches the zero frequency of the Bode diagram.
3.7 Visualization of System Dynamics -Velocity control system-

Velocity scope

+ Simscape Multibody enables visualization of system dynamics
+ Dashboard Blocks library enables model manipulation and modification during simulation
3.8 Visualization of System Dynamics - Force control system -

Force control system

Task 0
S0 Stop
S1 Acc
S2 Const
S3 Deacc
S4 Force control

Velocity feedback system

Input
Target force

Output

Force feedback system

Gain [dB]

Phase [°]

0
50

-100

-180

-270

-360

0
10
100
1000

Frequency [Hz]

(Nyquist frequency)

Zero frequency = 5.8 Hz
= 36 rad/sec
≒ 27 msec

Input
Output

Force control Bode diagram

Target force (5N)

Force scope
3.9 Code Generation using Embedded Coder and Implementation to MCU

Created DSD—A

Code Generation

Generated code using MATLAB® Embedded Coder

Implement
3.10 Validation on Hardware
4. Construction of Controllable Multimodal Robot System
4.1 Overview of Robot-Arm system development

Robot information (URDF) Input
Robotics System Toolbox™

ROS Package

Trajectory planning algorithm

Pre-design and verification
Simulink®

Dynamics Simulation

Simscape™ Multibody™

Vision

Start

Goal

Obstacle

Start, Goal

Input

Sensor Data
4.2 Integrating Robotic Arm and Hand Model - Construction of Multimodal System -
4.3 Integrating Robotic Arm and Hand Model -Construction of Multimodal System-
5. Impression and Conclusion
5.1 Impression -MATLAB® used in Robotics-

- Usability
 + Simulink® UI contains components that enable users (even beginners) to create and build their own system easily
 + Plenty of apps such as Linearization Manager and Model Linearizer to help users design their control systems
 + Simscape™ Multibody™ visualizes the robot system dynamics and help users troubleshoot control system errors
 + Embedded Coder® allows users to generate C and C++ code automatically to reduce costs and resources in developing software

- Request
 + Improving performance for complex simulations (e.g. contact forces, multiple sensors, robot complexity, etc.)

 ➔ I hope MATLAB® will provide tools to understand tradeoff between performance and precision
5.2 Conclusion

+ We are developing an autonomous collaborative robot capable of multi-modal control based on camera, arm, hand, and various sensor information in order to meet diverse customer needs.

+ This session focused on an overview of our development of robot hand with multiple sensors based on MBD. We also introduced SDK and DSD-A design to improve the efficiency in robot hand development.

+ We believe that we can increase the development speed of robot hands by using the proposed development process that combines the SDK and DSD-A for robot hands with the MBD and MATLAB® roots. Hopefully, this problem could lower the difficulty for development in robotics industry.