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MATLAB EXIPC

Industry and Research Invest in Al in Different Ways
Better Models or Better Data?

Amount of lost sleep over...

PhD Tesla
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[l modeis and aigorthms
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Andrej Karpathy — Building the Software 2.0 Stack (Spark+Al Summit 2018)



https://www.youtube.com/watch?v=y57wwucbXR8

Data-Centric Al in 2022 — Trend Gaining Pace and Visibility

IEEE Spectrum Andrew Ng: Unbiggen Al Q Type to search

Unbiggen Al >

INTERVIEW ARTIFI

Andrew Ng
for smart-sizee=terert=

BY ELIZA STRICKLAND | pg FEB 2022 | 1@ MIN READ | [J

https://spectrum.ieee.org/andrew-ng-data-centric-ai
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Most existing Al resources support few applications
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Most signal processing applications cannot count on many Al resources
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Seismic analysis Predictive maintenance

Machine health
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Time for a survey...

Which of these best describes your Al-related challenges?

O Model Complexity

O Data Complexity |I‘|l‘|l| @’

O Al Expertise
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Data-Centric Al in Signhal Processing Applications
Agenda — Three Practical Engineering Approaches

1. Transfer learning with pre-trained Al models @3

2. Feature extraction with simpler and smaller Al models

A=

3. Better signal datasets, real or simulated |I‘||‘|I|



MATLAB B

How can | apply transfer learning to detecting faults in an air
compressors based on their noise

- Have dataset with labeled sound recordings
= One “healthy” class

= 7 different classes of faults
- 1800.wav files, 225 per class ..

Sound of healthy compressor

Example: Transfer Learning with Pretrained Audio Networks in Deep Network Designer



https://www.mathworks.com/help/audio/ug/transfer-learning-with-pretrained-audio-networks-in-deep-network-designer.html

Finding a pre-trained deep learning e -

network for Transfer Learning

= Find one directly in MATLAB

= Import it from a known
non-MATLAB repository

MATLAB BEXJ

& matlab-deep-learning / L Notifications % Fork 23 fr Star 133 -

<> Code @ Issues 1% Pull requests @) Actions M Projects 0 wiki @ Security |~ Insights

— cowne ([T Aoou

Discover pretrained models for

2 davidwillingham Minor update to README.md ... 8daysage ¥D1M  deep learning in MATLAB
B Images initial commit 3 months ago @ www.mathworks.com/solutions/de...
M LICENSE Initial Commit 3 months ago ey Qe
pretrained-models
[ MATLABDeeplearin... updating YOLOvA and CRAFT to link the new... 9 days ago
matlab-deep-learning
[ READMEmd Minor update to README.md 8 days ago
0 Readme
[ SECURITY.md Initial Commit 3 months ago
&8 View license
[ viewDeeplearningM... Script for launching the Deep Leamning Mode... 2 monthsago ¢ 133 stars
® 14 watching
‘= READMEmd % 23 forks

MATLAB Deep Learning Model Hub Releases 2

A
© R2022a ( latest)

Discover pretrained models for deep learning in MATLAB. 8 days age
8 days

Models + 1 release

https://github.com/matlab-deep-learning/MATLAB-Deep-Learning-Model-Hub

1 TensorFlow é Caffe2 O PyTorch

e 1N |
‘ — @ <—>@Xﬂet

MATLAB ONNX

Caffe / | AN
@ QChainer @q‘m”
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https://github.com/matlab-deep-learning/MATLAB-Deep-Learning-Model-Hub
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Demo — Transfer Learning with YAMNet for Fault Detection

4\ Deep Network Designer

4\ Deep Network Designer Start Page

Getting Started | Compare Fretrained Networks | Transfer Leaming

v Sequence Networks 4\ Deep Network Designer
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 traininfoStruct_1  Tx7 struct

Hurl hitps:/Awwew.mathworks.com/supportfiles/aug
& vpred 880x1 categorical
15880 categorical

Example: Transfer Learning with Pretrained Audio Networks in Deep Network Designer
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https://www.mathworks.com/help/audio/ug/transfer-learning-with-pretrained-audio-networks-in-deep-network-designer.html

Transfer Learning — Handouts

Choosing the right model for transfer learning

Journal of

Sensor and
Actuator Networks

Article

Table 1. Selected CNNs.

CNN Type Trainedin _ Numberof Layers _ Millions of Parameters
GoogleNet  lmage  ImageNet 2 7
SqueezeNet  Image  ImageNet 18 124
ShuffleNet  Image  ImageNet 50 14

VGGish Sound YouTube 2 71

Yamnet Sound YouTube 2 Az

Comparison of Pre-Trained CNNs for Audio Classification
Using Transfer Learning

Table 4. The classes, the number of files, and the file types of the selected datasets.

Dataset Classes Number of Files File Type
UrbanSoundsk 10 Lran wav
0 0
Air Compressor 5 1800 wav

Eleni Tsalera %, Andreas Papadakis ** and Maria Samarakou

Classification accuracy per CNN per dataset

Training from Scratch vs. Transfer Leammﬁ O UrbunSoendih  BESCI0 @ Ak Comprassor

Futrenes

Saveerehet
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un
s 9325
a8 017875
I B3 II

GoogeNet

bogleNet SqueezeNot ShuffieNet VGGish YAMNet
ONN
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https://www.mdpi.com/2224-2708/10/4/72

Download @ Journal of Sensors and Actuator Networks

Spectrum Sensing with Deep Learning to Identify
5G and LTE Signals

Network: ResNet-50 (Image segmentation)
Input: 256-by-256-by-3 images

Features: spectrogram of baseband waveforms

Recelved Spectrogram sy
_ i .
o
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o
Frequency (MHz}
True signal labels
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Frequency (MHz)
Estimated signal labels
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Transfer Learning with models pre-trained on different types of data

Classify Time Series Using Wavelet Analysis and
Deep Learning
Network: GooglLeNet (Image object classification)

Input: 224-by-224-by-3 images
Features: cwt (scalogram) of ECG signals
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MATLAB EXIPC

Data-Centric Al in Signhal Processing Applications
Agenda — Three Practical Engineering Approaches

1. Transfer learning with pre-trained Al models

2. Feature extraction with simpler and smaller Al models

&
A5

3. Better signal datasets, real or simulated

13



Deep networks most often don’t learn directly from raw signals

MATLAB EXIPO

14
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Time-frequency transformations are popular feature extraction methods

Reframe To frequency

(e.g. Buffer) (e.g. FFT)

Time (samples)
frequency (bin #)

Time (samples) Time (frame #)

Time (frame #)

15
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Time-frequency transforms make signal characteristics more evident

Time-frequency transform

16
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How to use feature extraction to segment ECG signals?

- Have dataset with signals labeled by cardiologists
= 3 types of wave events P Wave
« 210 ECG recordings (total ~15 minutes)

QRS

T Wave

X
Q N/A
o =,

S

Example: Waveform Segmentation Using Deep Learning

17


https://www.mathworks.com/help/signal/ug/waveform-segmentation-using-deep-learning.html
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Feature extraction allows getting high accuracy from simple Al models
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Feature extraction reduces model and data complexity

2
2
=

frequency

Time-frequency transform

Recurrent
Neural
Network

MATLAB BEXIPPO

Very Complicated Neural Network i

19



Domain experts are best placed to select feature extraction algorithm

Model size, signal patterns

1 |data cwt
224522423 images

Automated methodology

waveletScatterlng

|
= Sealing Function
Wavelet - Real Part
‘Wavelet - Imaginary Part

Application and signal type

| ‘f ifl |H| I |
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Test-based experiments

experimentManager

sighélFrequencyFeatureExtractor

MATLAB BEXIPPO
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Feature Extraction — Handouts

MathWorks Wins Geoscience Al GPU Hackathon . : <
The following post is from Akhilesh Mishra, Mil Shastri and Samuith V. Rao from MathWorks here to talk about their participation Da | h atsu U ses A| to C | aSSIfy E ng ne SOU n d S

and in a Geoscience hackathon. Akhilesh and Mil are Applications Engineers and Samvith is the Industry Marketing Manager
supporting the Oil and Gas industry.

Background
SEAM (SEG Advanced Modeling Corp.) is a petroleum geoscience industry body that fosters collaborations among industry,

government, and academia to address major Geological challenges. Their latest event was a hackathon (SEAM Al Applied

Geoscience GPU Hackathon) that sought to explore the use of Al to improve both qualitative and quantitative interpretation of Cha"enge

geophysical images of Earth's interior, and speed up the applications using NVIDIA GPUs. Deve|°p an Al solution that can judge the level of engine

A tatal of 7 teams participated from all over the world, including corr ial ies (Chevron, Total, Petrobras) and a mix of knocking Sound, which Only skilled workers could judge

industry and university students. Each team was assigned a mentor who is an expert geoscientist working for a top oil and gas "

catrpany. Solution

The Challenge Create classification models and easy-to-use interface with

Geologic interpretation of : - — TR —— MATLAB, making it possible to examine features multiple

industry. Seismic images times i

summarized by the term *

and abandonment of unds Daihatsu used Al to identify knocking sounds from its

Key Outcomes

P . engines.
often colled seismic g = Performed knocking sound analysis with the same
:_’“sl"“’;“s = 5:": dongd accuracy as skilled workers “Although we tried other programming languages, it
e, 1 = Increased Al expertise through MATLAB training was hard to implement. We decided to use MATLAB,
The problem statement of = Promoted visualization of Al and increased awareness which allt_vws usto eBSl_ly import the necessa(y data
automatically, producing | of Al by dragging and dropping, and we could easily see

up human interpretation.
The Data

We were given the followil
public and has been labels

the result by ourselves.”
- Takuya Kumagae, Daihatsu Motor Co., Ltd.

Link to case study

T

MathWorks Deep Learning Blog Post Daihatsu User Story

21


https://blogs.mathworks.com/deep-learning/2021/08/03/mathworks-wins-geoscience-ai-gpu-hackathon/
https://www.mathworks.com/company/user_stories/case-studies/daihatsu-uses-ai-to-classify-engine-sounds.html

MATLAB BEXF

Requiring smaller datasets multiplies the impact of data engineering

= Using transfer learning...
= ...or feature extraction with simple models...

= ...leads to requiring much smaller labeled datasets for model training

=) &

22
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Data-Centric Al in Signhal Processing Applications
Agenda — Three Practical Engineering Approaches

1. Transfer learning with pre-trained Al models

2. Feature extraction with simpler and smaller Al models

3. Better signal datasets, real or simulated

&>
i~
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How can | enhance the quality of my training signal data?

Define accurate data labels
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Augment data via signal processing

audioDataAugmenter
24
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MATLAB EXPO 2022 Talk — Honeywell Technology Solutions

Automating Audio Labeling Workflow Using Pre-Trained Deep
Learning Models for Voice Activity Detection

AUTOMATING AUDIO LABELING WORKFLOWV USING
DEEP LEARNING FORVOICEACTIVITY DETECTION
- "‘ 4 »

‘.

EXAMINING THE LABELING

a4

RAMAKRISHNAN RAMAN VASANTHA SELVI PAULRA]
FELLOW LEAD EMBEDDED ENGINEER

HONEYWELL TECHNOLOGY SOLUTIONS HONEYWELL TECHNOLOGY SOLUTIONS

Track: Al in Engineering
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Data-Centric Al accelerates Al adoption by domain experts

The “unbiggen AI” eﬁeCt o 1FiensorFIow © caffez O PyTorch
4 cne

Pretrained YAMNet
ooooooooooooooooo
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O AlbExpertist »> Domain Expertise

Al + Signal Processing
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