EPO

Reinforcement Learning Workflows for Al

<) MathWorks

Key Takeaways

- What is reinforcement learning and why should | care about it?
- How do | set up and solve a reinforcement learning problem?

- What are some common challenges?

[LAB EXIPO

&\ MathWorks

Why Should You Care About Reinforcement Learning?

Hip joint

Knee joint

Ankle joint

[LAB EXIPO

&\ MathWorks

One Approach Could Be...

--
* *

S *
--

Measurements Motor torques

<

&\ MathWorks

Any Alternatives?

Measurements

>

Black Box
Controller

Motor torques

&\ MathWorks

Applications of Reinforcement Learning

{® AutoVrtiEny (64-bit, PCD3D_SMS) - O X

Fin Gt View oot Took Daskdop Window Help] —- e T
NDagda /@ 08 E
_‘__ﬂ__,__—-‘ a
"ﬁ' 1) %
___'_ﬂ_f—"';" o / .‘
"y e ‘
p——— ' o
,,—'—"'_'_'_'_ .
____,_,—'—"'-'_'_ 4
= o
1L L

':J

e
——

\ C')Supply

| (P, 1] Tank
Reservoir —(P’_)

QDemand

What is reinforcement learning?

Type of machine learning that trains an ‘agent’ through trial & error
Interactions with an environment

LAB EXIPO

&\ MathWorks

Reinforcement Learning vs Machine Learning vs Deep Learning

{ Machine Learning }

Unsuper_vised Supervised Learning Relnforcgment
Learning Learning

[No Labeled Data] [Labeled Data] [Interaction Data]

G W, G

200)

4\ MathWorks 8

Reinforcement Learning vs Machine Learning vs Deep Learning

{ Machine Learning }

Unsuper_vised Supervised Learning Remforc&_ement
Learning Learning

[No Labeled Data] [Labeled Data] [Interaction Data]

O O= QW0

&\ MathWorks 9

N

Reinforcement Learning vs Machine Learning vs Deep Learning

[Machine Learning J

Unsuper_vised Supervised Learning Relnforcgment
Learning Learning

[No Labeled Data] [lEE el [Interaction Data]

4\ MathWorks

10

Reinforcement Learning vs Machine Learning vs Deep Learning

[Machine Learning J

Unsuper_vised Supervised Learning Relnforcgment
Learning Learning

[No Labeled Data] [Labeled Data] [Interaction Data]

&\ MathWorks 11

Reinforcement Learning vs Machine Learning vs Deep Learning

[Machine Learning J

Unsuper_vised Supervised Learning Relnforcgment
Learning Learning

[No Labeled Data] [Labeled Data] [Interaction Data]

{ Deep Learning]

What about deep learning?

Complex reinforcement learning problems typically need deep neural networks
[Deep Reinforcement Learning]

\B EXXPO

&\ MathWorks

12

How does reinforcement learning training work?

Analogies with pet training

-

OBSERVATIONS

AGENT \

Here is
your treat!

o

Policy update

Reinforcement
Learning

Algorithm /

REWARD

ENVIRONMENT

4\ MathWorks

ACTIONS

13

Reinforcement Learning Concepts
Training a self-driving car

Vehicle’s computer...

K AGENT \ (agent)

OBSERVATIONS ACTIONS = is reading sensor measurements from LIDAR, cameras,...
’—’ (observations)
TPolicy update = that represent road conditions, vehicle position,...
Reinforcement (environment)
] Learning = and generates steering, braking, throttle commands,...

\ Algoithm / (action)

based on an internal state-to-action mapping...

REWARD (pO“Cy)

that tries to optimize, e.qg., lap time & fuel efficiency...
(reward).

ENVIRONMENT

The policy is updated through repeated trial-and-error by a
reinforcement learning algorithm

\B EXXPO

&\ MathWorks 14

Reinforcement Learning Concepts

Training a self-driving car

After training, only trained

policy is needed

POLICY

OBSERVATIONS ACTIONS

ENVIRONMENT

\B EXXPO

Vehicle’s computer uses the final state-to-action
mapping... (policy)

to generate steering, braking, throttle commandes,...

(action)

based on sensor readings from LIDAR, cameras,...

(observations)

that represent road conditions, vehicle position,...

(environment).

By definition, this trained policy is
optimizing lap time & fuel efficiency

&\ MathWorks

15

Reinforcement Learning vs Controls

Control system Reinforcement learning system
(AGENT \
1/\ ERROR CONTROLLER BLANT . OBSERVATIONS Polioy ACTION
REFERENCE\.,/ MANIPULATED ‘ Policy update
- 1 VARIABLE Reinforcement
Learr?tiir:g]
et

MEASUREMENT

REWARD

ENVIRONMENT

Adaptation mechanism

RL Algorithm
Error/Cost function Reward
Manipulated variable Action
Measurement Observation
Plant

Controller

Environment

Policy

Reinforcement learning has parallels to control system design

=

4\ MathWorks 16

Policy Representation and Deep Learning

Representation options
= Look-up table

= Polynomials /

~

s 11 31T
4 ‘] « « «
Observations > 3 r l > Next action
o &1 !
L == =lA

2o a5/

Look-up tables do not scale well

'LAB BE>XIPO &\ MathWorks 17

Policy Representation and Deep Learning

Representation options
= Look-up table
= Polynomials

= (Deep) neural networks

Observations >

(camera frame, sensors, ...)

/ Deep neural network polich

" /

:> Next action

Neural networks allow representation of complex policies

LAB EXIPO

&\ MathWorks

18

How do | set up and solve
a reinforcement learning problem?

AB EXIPO

&\ MathWorks: 19

Reinforcement Learning Workflow

- Simulation models or real hardware - Deep network? Table? Polynomial?

= Virtual models are safer and cheaper . Select training algorithm

= Tune hyperparameters
= Trained policy is a standalone

‘ﬁs +? o function —
S g >9 &N .

Environment Reward Policy
representation

Training Deployment

= Large number of simulations needed
= Numerical value that evaluates goodness of policy _ o

= Parallel & GPU computing can speed up training
= Reward shaping can be challenging o _

= Training could still take hours or days

LAB EXPO

&\ MathWorks 20

Reinforcement Learning Workflow

.)
a b ¢
— — 3 —»: .
e A T Segentd L
a L BN
Environment Reward Policy Training Deployment
representation
\B E>XIPO &\ MathWorks 21

Reinforcement Learning Toolbox
Introduced in R2019

= Built-in and custom reinforcement learning algorithms

= Environment modeling in MATLAB and Simulink
— Existing scripts and models can be reused

= Deep Learning Toolbox support for representing policies

= Training acceleration with Parallel Computing Toolbox and
MATLAB Parallel Server

= Deployment of trained policies with GPU Coder and
MATLAB Coder

- Reference examples for getting started

, EXXIPO

4 MathWorks: =

Reinforcement Learning Toolbox mewessnser

Reinforcement Learning Toolbox

Design and train policies using reinforcement learning

nd deci
stems such as robots and autonomous systems. You can
ici ing deep neural networks, polynomials, or look-up tables.

implement the

The toolbox lets you train policies by enabling them to inter:

training performance, you can run simul
clusters, and GPUs (with Parallel Computing Toolbox™ and MATLAB Paraliel
Server™),

Through the ONNX™ model format, existing policies can be imported from deep
learning frameworks such as TensorFlow™ Keras and PyTorch (with Deep Learning
Toolbox™). You can generate optimized C, C++, and CUDA code to deploy trained
policies on microcontrollers and GPUs.

The toolbox includes reference examples for using reinforcement learning to design
controllers for robotics and automated driving applications.

4\ MathWorks 22

Example: Walking Robot

s b |
®”W — 6 — 8@0 + — gmd —

Environment Reward

Control objective: Walk
on a straight line

Policy Agent Training Deployment

Measurements { @ Motor torques

&\ MathWorks

23

Creating the Environment

a| iWalkingBipedRobot_Template b [Pa| Walking Robot b

inpR

Torque Scaling R

’ t ’
max worgue
3 = 3

inpL
= Torque Scaling L

meask
1{11}| - :sensors
I'I'IEi;SL Er
1l
11411
meas {1 —B F
tnﬁque}s o o Sensors
H > F>4_"_*~?B)
Robot Leg R
LRSS Right Hip to Torso
* G W * B:#F
6-DOF Joint
World and Ground
11{11)
meas —— R Glal
tm;qués oo
H F}E_F‘B

Robot Leg L

38(38)
33{35’} @

Sensors

"

Left Hip to Torso

Torso

Reward Shaping

Reward function inspired by
"Emergence of Locomotion
Behaviours in Rich Environments™
Google DeepMind, 2017
hitps://arxiv.org/pdff 1707 02286 pdf

%

Forward Velocity
Reward Scaling

ol 2 l[&:d]

®[6x1]

prevAct

[6x1]

Y

forward_reward

Daviation Penalty Scaling Y

14

deviation_penalty

utbh F—p

P

\a(,y

Deviation Penalty Scaling Z

/

0.02

h 4

joint_penalty @

' lﬁxiT

\

Torque Penalty Scaling

25*Ts/Tf

- reward

duration_reward

Duration Reward

&\ MathWorks 25

g\

DESIGNER
Cut K A
E::::' ‘EL _ X, Zoom In % W
Mew Import Duplcaie Fit (=, ZoomOut Auto Analyze Ewport
= Paste | to\iew Arrange -
FILE BUILD . NAVIGATE | LAYOUT |ANALYSIS |[EXPORT | =

LAYER LIBRARY

-

 ~ofl observation
INPUT Ac) S Lo
7 ImagelnputLayel

N,
E imagelnputLayer

= image3dinputLayer

.
m sequencelnputLayer ActorFC1

fullyConnected...

131 roilnputLayer
CONVOLUTION AND FULLY CONMECTED

convolution2dLayer
8 ¥ J
ﬁl convolution3dLayer E ActorRelu

reluLayer

groupedConvolution2dLayer

transposedConv2dLayer

EI transposedConv3dLayer ActorFC2

E fullyConnectedLayer

fullyConnected. ..

n IstmLayer
il

= . - B ActorRelu2
iletrml awer

reluLayer

PROPERTIES
Mumber of layers
Mumber of connections
Input type

Cutput type

Image

Mone

Creating the Agent

Walking RObOt: Reil agentOptions

= rlDDPGAgentOptions;

Enable animation

Disable animation

. agentOptions.SampleTime = Ts;
Copyright 2019 The MathWo agentOptions.DiscountFactor = 8.99;
agentOptions.MiniBatchSize = 128;
- [6x1] agentOptions.ExperienceBufferlLength = le6; right 3’ I
[6x1] z agent = rlDDPGAgent(actor,critic,agentOptions); left 3>
Actions
e
meas ~ [29x1]
observation P observation
prevAct [29x1] aclion 3
; inpR
Calculate Observation . 3
[6x1]
meas
reward P reward sensors
prevAct
Calculate Reward
cumulative_reward D l3 inpl.

meas isdone
38(38) |

Check if Done

P isdone

Reward

&

3 torques per leg
(ankle knee hip)

Walking Robot

38(38)
sensors

27

Training the Agent

% 36 n+”“

trainOpts.UseParallel = true;

trainOpts.ParallelizationOptions.Mode = "async’';

4 Reinforcement Leaming Episode Manager - X

Episode Reward for walkingRobotRL2D with rIDDPGAgent Training Progress (04-Feb-2019 22:03:20)

—=— EpisodeReward
#* AverageReward
EpisodeQ0

Episode Information
Epizode Mumber 2178
Episode Reward 92.6584
Episode Steps 400
Episode Q0 58.0514
Total Number of Steps 233493

Average Results
Average Reward 1000177
Average Steps 308.188
Window Length for Averaging 250

Episode Reward

Training Options
Hardware Resources for Actor and Critic cpu cpu
Learn Rates for Actor and Critic 0.0001 0.001
Maximum Number of Episodes 20000
Maximum Steps per Episode 400

Final Results
Training Stopped by AverageReward
Training Stopped at Value 100
Elapsed Time 18363 sec

50 i i i i i
] 500 1000 1500 2000 2500
Episode Number

&\ MathWorks 28

Mechanics Explorers - Mechanics Explorer-riWalkingBipedRobot_Template
File Explorer Simulation View Teols Window Help

P S T T BT

1 — f— | Time

Applications of Reinforcement Learning

e
S e
_F--""L_Pf_ ,//
e T ‘ ____,_,-'—-ﬂ“"_'- e
' S _ﬂ__ﬂ-ﬂ'fﬂ——
_,——"__Ff-'_'-__’_-ﬂ--
g
Qsuppy
| (P Tank
Reservoir —62_) Qoermand
eman
o
4,_J_ P,

&\ MathWorks 30

Autonomous Driving Example

Environment

Image (Observation)

RL Agent

Traditional

Controller

Steer, throttle,
Start/Goal 4 brake

y
I
< > — Car Position (Observation)

Objective: Augment traditional controller with
reinforcement learning to improve lap time

\B EXXPO

&\ MathWorks

31

| RL Tral ni ng Env' ron ment I —»u -‘ y ¥ Image Ei:gf:; ——— what the RL Agent or the CNN sees cmeer:v: [stearfL]
fen » < [acceiRL]
<Accel>
Driver correction with Reinforcement Leaming — " [brakeRL]
<Braker |

=
Time I:SJ — Reshape

distanceAlonghidlane]
[velocity_kph]
[resetFlag]
iR
[accelRL]
[brakeRL]

Simulation 30 Engine

Image processing for Training «— [[=0cne] >

(e camera at driver seat and a bird view camers for simulation use False ——| false
n1

o

RGE for newal net

Driver Seat Camara

CNN with 2 outputs (steer and aonshhraw|
- .

REE for taining F———»—] Call trained CNN

Image Processing

e
Mo > ™

— _ Reward

Steer Distsbanee
Qut >
Regat brake - Driver Visualization
[VehFabk] — | venFank o] R !
) switchi - - * >
[FerPosonE om e — b Soayxv - Mansi Drver | — pisturbance injection EPostionFromU | .
[distanceAlonghidliatsk —p| Distance © . [Environmant -
[resatFlag] —hmﬁlaﬁ?ﬁ and acoelibrake ngemer)— — \/eh I C | e M 0 d el
yawAngle_RelativeToMidlane] — s Y angle relative to midlane —
P

Manual Driver

- ¢ Traditional

&
=—-— Controller Qly 0 o

[VehFdbk]

p——

S

Y
I

<= >
[IviehFidbk] - 7
I, g - - Passanger Vehicle
) o Conircllers =t
<phi Lg (T8
L

distanceAlonghidlans < |distanceAlongMidians]

sontond| ———— >3]

track Tam(s)
‘w\ngle_ﬁelali-.eToMudlane M = [yawAngle_RelativaToMidlane]

fracky tracky geomstricCalculations

[yawRate_fizedRef]

wdat

Foo velocit

T s,
trackDist trackDist IateralDistance_Felative Tolidlans de::}ij) =TlateralDistance_RelativeToMidlans]
trackYawAngle ackYawAngle

resetFlag —[resetFlag]

[yawRate_fxedRaf]

[resatFlag]

yawAngleFiredRel

Geometric Calculations.

4\ MathWorks 32

|

ad 9 e‘ n +b“ Simulation 3D Engine o

Image processing for Training s

" Time (s)

U,

Velocity
make driver bus signal

-_>-[stee'RL] Steer RL
[yawAngle_RelativeToMidiane] — yawAngI. :

e : 1 .m -_N-[msemagl R.u:tFIag
@ AutoVrtiEny (64-bit, PCD3D_SMS) - [} > [(Berg et s
BjrdView Camera (instead of a GPS) ? — . =
RO fo waning

lateraiDistance_Relative ToMidlana]——s

Rewarc

One camera at driver seat and a bird view camer for simulation use False s
in1

RL Agent

RGBS for neural net

Driver Seat Camera

Velocity

Image Processing

RL Reward

|
1}

|)BS Vehicle Model with 14 DOFs Body, Mapped Engine, and simplified Driveline]

Visualization

Episode Reward for OvalTrackVDBSgL19a with rIDDPGAgent " &) ©) (]

09

08

07F

S
(=2}
T

Passenger Vehicle

Episode Reward
o
wm
T

<o
04F Training Options
L - velocity yawRoadp—— P
Hardware Resources for Actor and Critic cpu cpu me.
03k Learn Rates for Actor and Critic 0.001 0.0001 trackX)
X S 8 &wAngle,Relanve') -
Maximum Number of Episodes 5000 b geometricCalculations den(s)
Maximum Steps per Episode 167
02 trackDist lateralDistance_Relative ToMidl. ‘:::l((:))
Final Resul
I estits trackYawAngle
01k Training Stopped by 7‘ resetFlag > [resetFlag] |
Training Stopped at Value ... 5 | yaw tad) 4 bl g dF
Elapsed Time ... Geometric Calculations
0 1 L 1 L 1 L L L L J
0 0.1 0.2 0.3 0.4 05 0.6 07 0.8 09 1

Episode Number

B DXPPO 4\ MathWorks 33

Results

50

Lap time (S)

40 f

30 1

20 |

10 |

<)
=
Q
0p)
©
af)

RL+Baseline

30% performance improvement

200)

Traditional controller +
reinforcement learning

@ AutoVrtiEny (64-bit, PCD3D_SM5) = O X

'w

4\ MathWorks 34

Reference Applications in Documentation

= Controller Design ‘i oot ——»

Knee joinf ————»

1
- Robotic Locomotion 1 e | ‘
o Y P

Train DDPG Agent to Train Biped Robot to Walk Train DDPG Agent for
Control Flying RPnhnt llzinAa ARG Anant Ardantiva Cruiza Control
- Lane Keep ASSISt Train a reinforcement _ flearning agent
to control a flying rob "™ T l :J 1 } e fcontro
- Adaptive Cruise Control _
| 4
Train DQN Agent for Lane Train DDPG Agent for Path
. . . Keeping Assist Following Control
= |Imitation Learning
Train a reinfercement learning agent Train a reinfercement learning agent
for a lane keeping assist application. for a lane following application.

LAB EXIPO

&\ MathWorks 35

Pros & Cons of Reinforcement Learning

Pros cons

= No data required before training = Trained policies are hard to verify

(no performance guarantees)
New possibilities with Al for

hard-to-solve problems = Many trials/data points required
(sample inefficient)
- Complex end-to-end solutions can — Training with real hardware can be
be developed expensive and dangerous
= Uncertain, nonlinear environments = Large number of design parameters
can be used — Reward signal

— Network architectures
— Training Hyperparameters

Simulations are key in Reinforcement Learning

LAB EXIPO

&\ MathWorks 36

How Can MATLAB and Simulink Help?

Challenges MATLAB&SIMULINK

= Trained policies are hard to verify « Reuse existing code and models for
(no performance guarantees) environments

= Many trials/data points required
(sample inefficient)

— Training with real hardware can be
expensive and dangerous

= Use simulations for policy
verification
— Simulate extreme scenarios

)/

= Run simulation trials in parallel to
= Large number of design parameters accelerate training

— Reward signal

— Network architectures Consult Reinforcement Learning

Toolbox examples
— Iterative tuning with simulations

LAB EXIPO

/

— Training Hyperparameters

&\ MathWorks 37

Key Takeaways

- What is reinforcement learning and why should | care about it?
- How do | set up and solve a reinforcement learning problem?

- What are some common challenges?

[LAB EXIPO

&\ MathWorks 38

earn More

- Reference examples for controls,
robotics, and autonomous system
applications

- Documentation written for
engineers and domain experts

= Tech Talk video series on
Reinforcement Learning concepts

= Reinforcement Learning ebooks
available at mathworks.com

TLAB EXPO

Hip joint ———»

Knee joint ———»

Ankle joint

4, — : — % 2
Train DDPG Agent to Train Biped Robot to Walk Train DDPG Agent for
Control Flying Robot Using DDPG Agent Adaptive Cruise Control

Train a rei ement learning agent Train a rei
to control a flying robot model to control a b
4\ MathWorks: A

Reinforcement Learning Toolbox

and train p

3

reinforcement leaming

Reinforcement Learning Toolbox™ provides functions and blocks for training policies [Release Notes | 7\

using reinforcement learning algorithms including DQN, A2C, and DDPG. You can & PDF Documentation

use these policies to implement controllers and decision-making algorithms for .

complex systems such as robots and autonomous systems. You can implement the \gent for Lane Train DDPG Agent for Path
policies using deep neural networks, polynomials, or look-up tables. sist Following Control

The toolbox lets you train policies by enabling them to interact with environments
represented by MATLAB® or Simuliik® models. You can evaluate algorithms
experiment with hyperparameter settings, and monitor training progress. To improve

training performance, you can run simulations in parallel on the cloud, computer ¥ment learning agent Train a reinforcement learning agent
clusters, and GPUs (with Parallel Computing Toolbox™ and MATLAB Parallel . - N " e
Server™), g assist application. for a lane following applic

Through the ONNX™ model format, existing policies can be imported from deep
learning frameworks such as TensorFlow™ Keras and PyTorch (with Deep Leaming
Toolbox™). You can generate optimized C. C++, and CUDA code to deploy trained

policies on microcontrollers and GPUs

The taolbox includes reference examples for using reinforcement learning to design

controllars for rabotics and automated driving applications. E nv.ronmeﬂ+

Getting Started
Learn the basics of Reinforcement Learning Toolbox

MATLAB Environments
Model reinforcement leaming environment dynamics using MATLAB

Simulink Environments
Model reinforcement learning environment dynamics using Simulink models

Policies and Value Functions
Define policy and value function representations, such as deep neural networks and Q tabl

Agents
Create and configure relnforcement learning agens using common algorithms, such as S| Observation
Training and Validation (5+°‘+‘5)
Train and simulate reinforcement leaming agents

Joint angles

Camera vision

Policy Deployment
Code generation and deployment of trained policies

MathWorks

39

