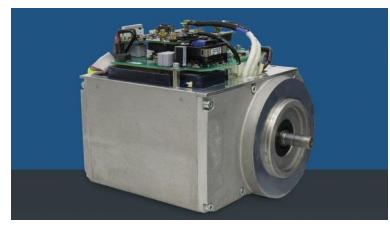

MATLAB EXPO

Spinning Brushless Motors with Simulink Presenter Name

We will spin a brushless motor using Simulink and Model-Based Design



Brushless motors are everywhere

Developing embedded motor control software has its challenges

ITK Engineering develops IEC 62304– compliant controller for dental drill motor with Model-Based Design

Challenge

Develop and implement field-oriented controller software for sensorless brushless DC motors for use in dental drills

Solution

Use Model-Based Design with Simulink, Stateflow, and Embedded Coder to model the controller and plant, run closed-loop simulations, generate production code, and streamline unit testing

Results

- Development time halved
- Hardware problems discovered early
- Contract won, client confidence established

Dental drills featuring ITK Engineering's sensorless brushless motor control.

"Model-Based Design with Simulink enabled us to design and optimize the controller even before the motor hardware was available for testing and then generate production code for the controller once we had the motor. It would have been impossible to complete this project on schedule if we had written the code by hand."

- Michael Schwarz, ITK Engineering

Developing embedded motor control software has its challenges

- Design work needed to be started before motor hardware was available and needed extensive testing to comply with standards
- Team needed to rapidly implement control software on embedded processor once more hardware became available
- Complex algorithms running at high sample rates were difficult to implement in short amount of time

ITK Engineering develops IEC 62304– compliant controller for dental drill motor with Model-Based Design

Challenge

Develop and implement field-oriented controller software for sensorless brushless DC motors for use in dental drills

Solution

Use Model-Based Design with Simulink, Stateflow, and Embedded Coder to model the controller and plant, run closed-loop simulations, generate production code, and streamline unit testing

Results

- Development time halved
- Hardware problems discovered early
- Contract won, client confidence established

Dental drills featuring ITK Engineering's sensorless brushless motor control.

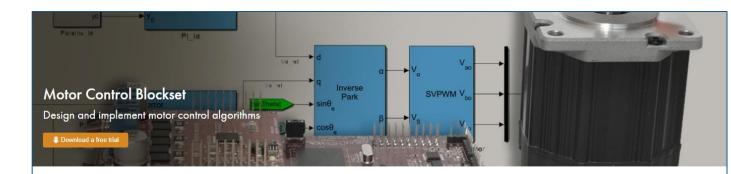
"Model-Based Design with Simulink enabled us to design and optimize the controller even before the motor hardware was available for testing and then generate production code for the controller once we had the motor. It would have been impossible to complete this project on schedule if we had written the code by hand."

- Michael Schwarz, ITK Engineering

Why Simulink for motor control?

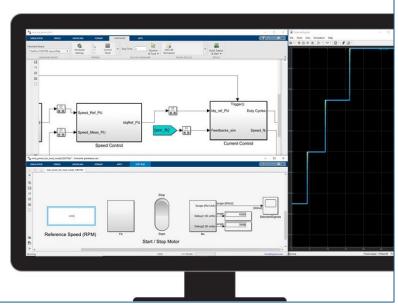
 Verify control algorithm with desktop simulation

Generate compact and fast code from models


 Minimize development time using reference examples Customers routinely report 50% faster time to market

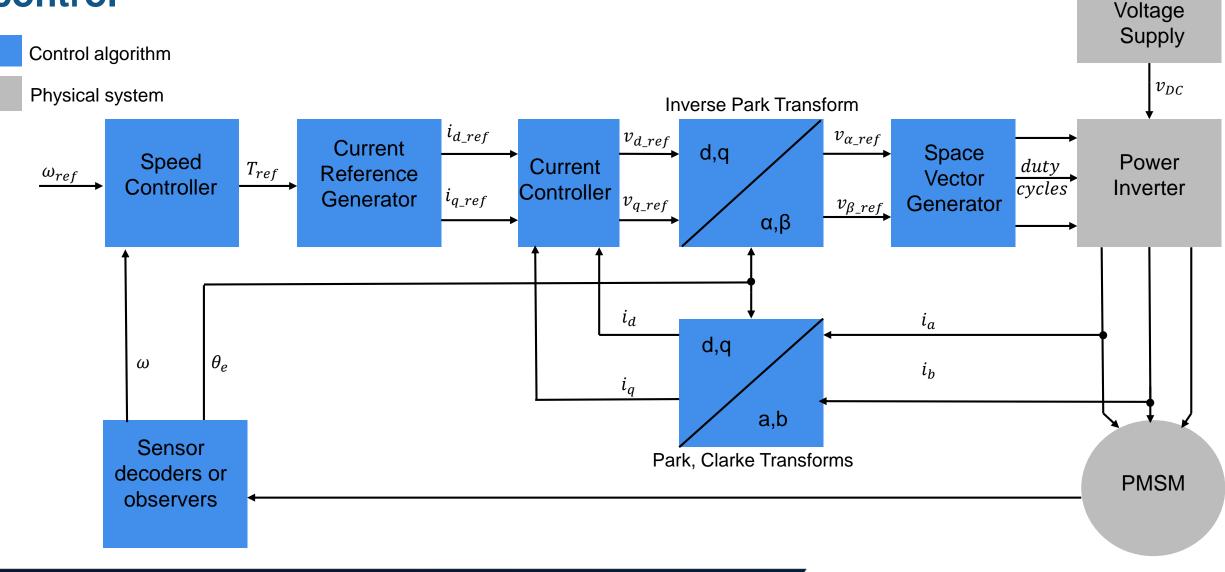
Motor Control Blockset simplifies the workflow

- Control blocks optimized for code generation
- Sensor decoders and observers
- Motor parameter estimation
- Controller autotuning
- Reference examples

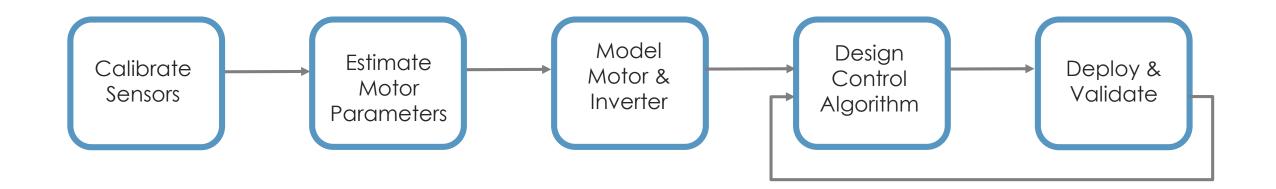


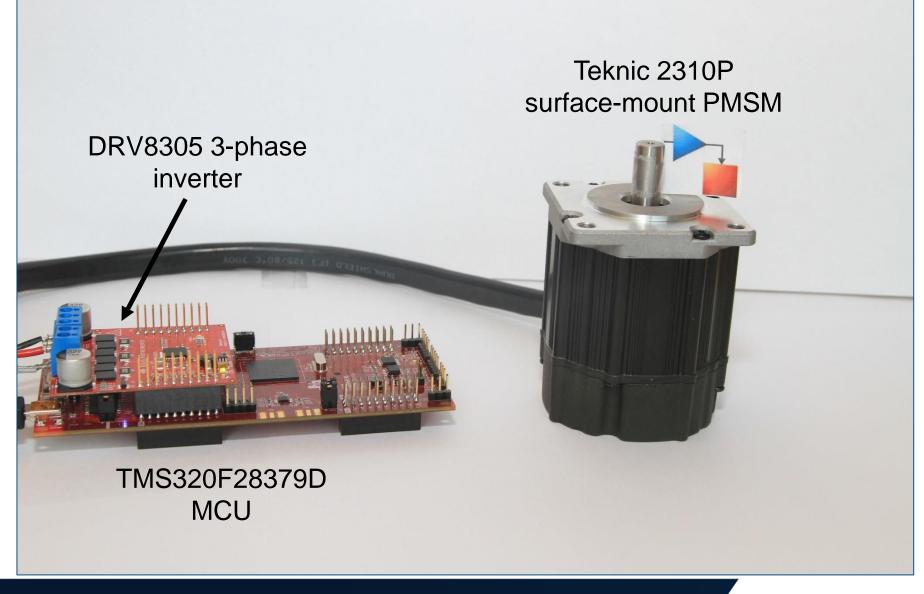
Motor Control Blockset[™] provides reference examples and blocks for developing field-oriented control algorithms for brushless motors. The examples show how to configure a controller model to generate compact and fast C code for any target microcontroller (with Embedded Code[#]). You can also use the reference examples to generate algorithmic C code and driver code for specific motor control kits.

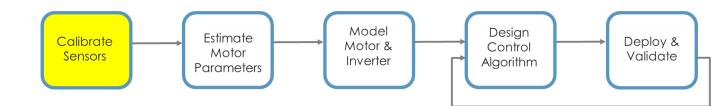
The blockset includes Park and Clarke transforms, sliding mode and flux observers, a space-vector generator, and other components for creating speed and torque controllers. You can automatically tune controller gains based on specified bandwidth and phase margins for current and speed loops (with Simulink Control Design™).

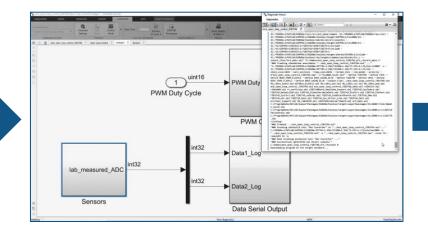

The blockset lets you create an accurate motor model by providing tools for collecting data directly from hardware and calculating motor parameters. You can use the parameterized motor model to test your control algorithm in closed-loop simulations.

Get Started:	
Reference Examples	Latest Features
Motor Control Algorithms	Documentation and Resources
Sensor Decoders and Observers	Try or Buy
Controller Autotuning	
Motor Parameter Estimation	
Motor Models	

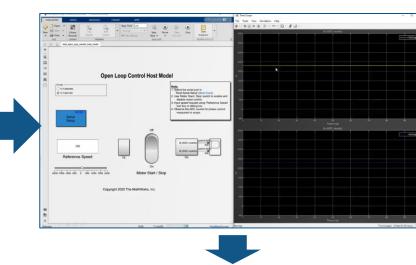

Brushless motors require complex algorithms – field-oriented control

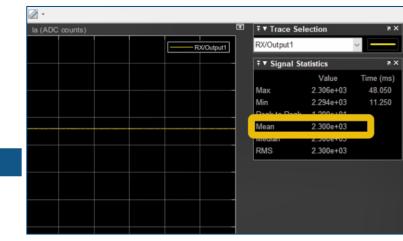

Workflow for implementing field-oriented control


We will use Texas Instruments motor control kit

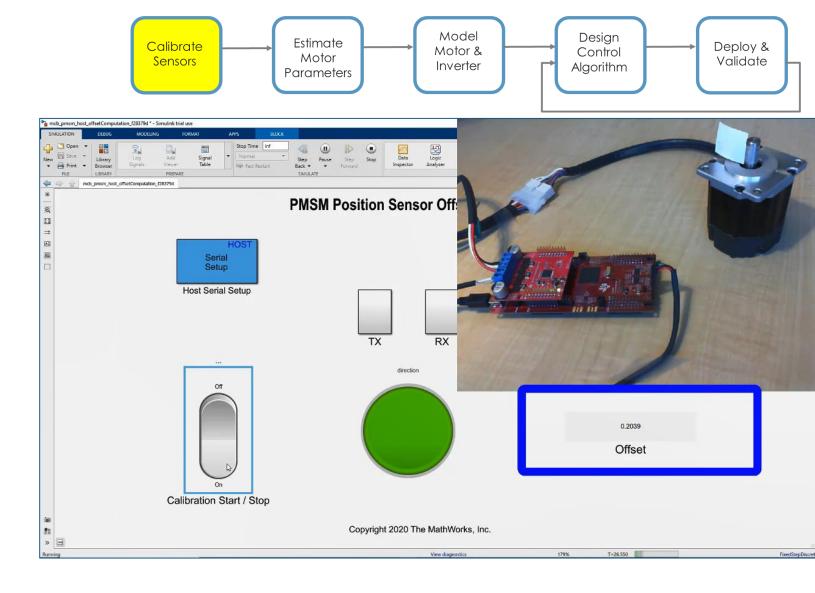


Sensor calibration




Calibrate ADC offsets

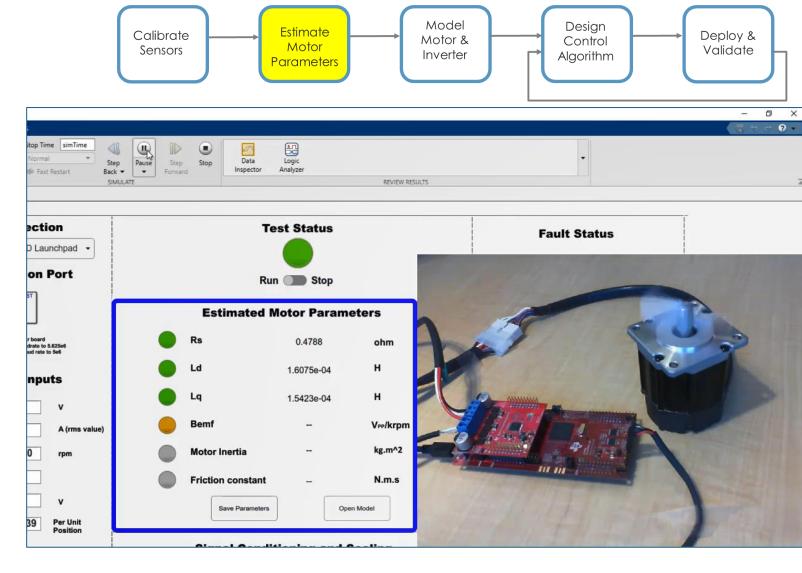
case 'BoostXL-DRV8305'			
inverter.model	= 'BoostXL	-DRV8305	;8]
inverter.sn	= 'INV_XXX	X';	1
inverter.V_dc	= 24;	\$V	11
inverter.I_max	= 19.3;	%Amps	11
inverter.I_trip	= 10;	%Amps	11
inverter.Rds_on	= 2e-3;	%Ohms	11
inverter.Rshunt	= 0.007;	%Ohms	11
inverter.MaxADCCnt	= 4095;	%Counts	s //
inverter.CtSensAOffset	= 2300	%Cot	ints
inverter.CtSensBOffset	= 2303	&Cot	ints
inverter.ADCGain	= 1;	*	11



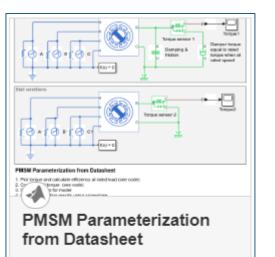
Sensor calibration

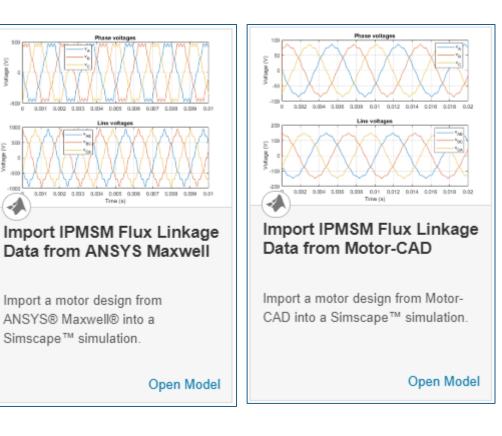
Calibrate ADC offsets

 Calibrate position sensor offset



Parameter estimation


- Instrumented tests running on the target
- Host model to start and control parameter estimation


Bonus: you can use other techniques to parameterize motor models

Two test harnesses that add confidence that a PMSM is correctly parameterized from a datasheet. It also calculates motor efficiency at

Open Model

MATLAB EXPO

Generate Parameters for Flux-Based PMSM Block

Using MathWorks tools, you can create lookup tables for an interior permanent magnet synchronous motor (PMSM) controller that characterizes the *d*-axis and *q*-axis current as a function of *d*-axis and *q*-axis flux.

To generate the flux parameters for the Flux-Based PMSM block, follow these workflow steps. Example script CreatingIdqTable.m calls gridfit to model the current surface using scattered or semi-scattered flux data.

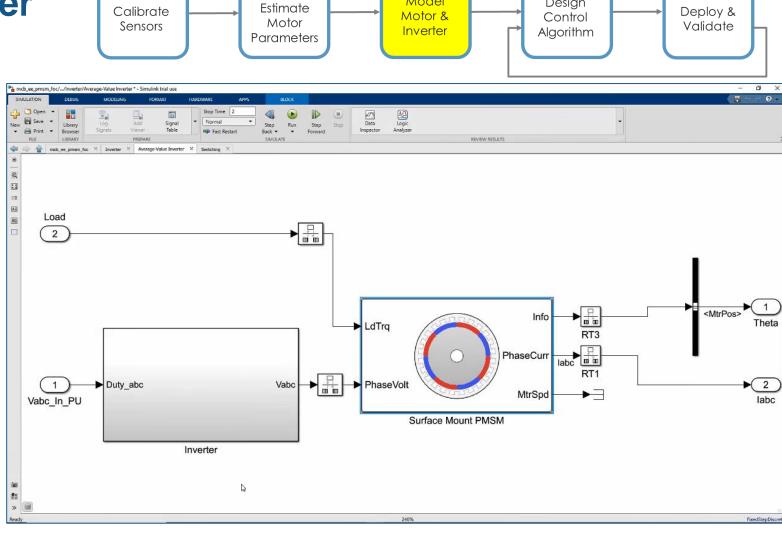
Workflow	Description
Step 1: Load and Preprocess Data	 Load and preprocess this nonlinear motor flux data from dynamometer testing or finite element analysis (FEA): <i>d</i>- and <i>q</i>- axis current <i>d</i>- and <i>q</i>- axis flux Electromagnetic motor torque
Step 2: Generate Evenly Spaced Table Data From Scattered Data	Use the gridfit function to generate evenly spaced data. Visualize the flux surface plots.
Step 3: Set Block Parameters	Set workspace variables that you can use for the Flux-Based PM Controller block parameters.

From datasheet

Simscape Electrical

From ANSYS Maxwell, JMAG, Motor-CAD FEA tools

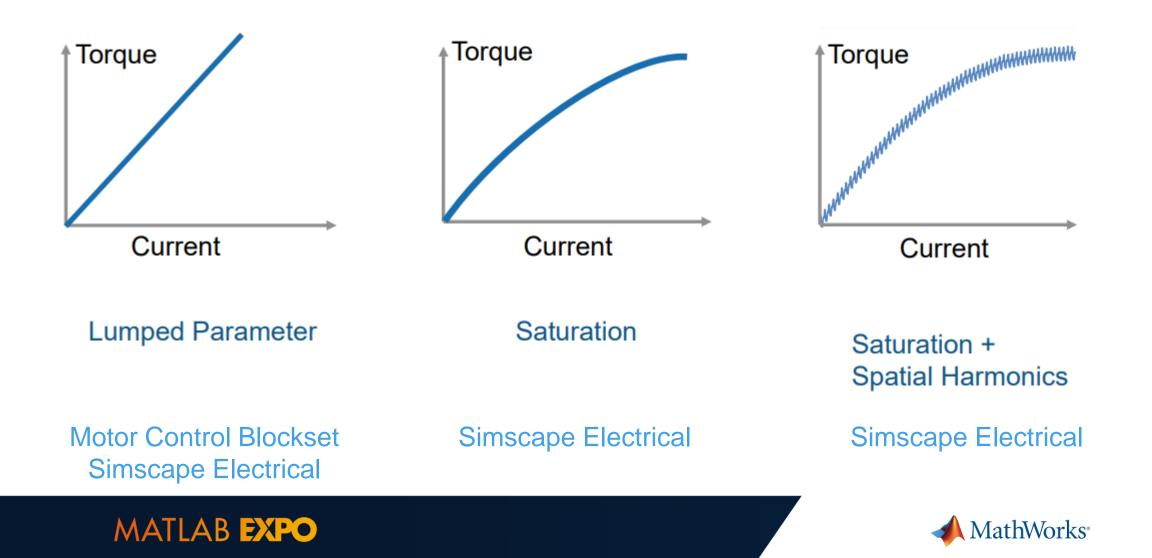
Simscape Electrical


From dyno data

Powertrain Blockset

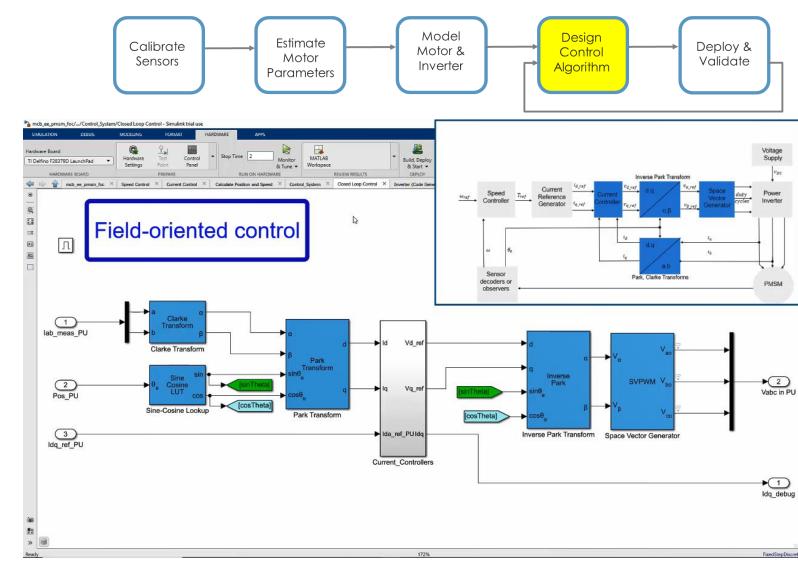
Modeling motor and inverter

- Use linear lumped-parameter motor model
- Model inverter as an average-value inverter or model switching with **Simscape Electrical**


Model

Design

Bonus: you can model at needed level of fidelity

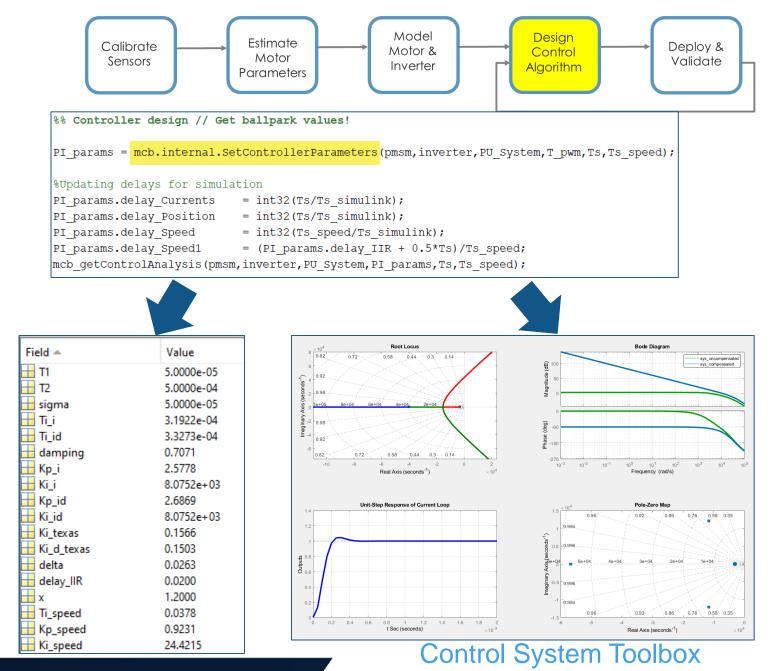


16

Control algorithm design

- Model field-oriented control algorithm
- Model sensor decoders or sensorless observers
- Tune loop gains

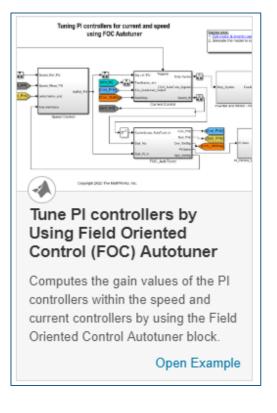
 Verify in closed-loop simulation



Control algorithm design

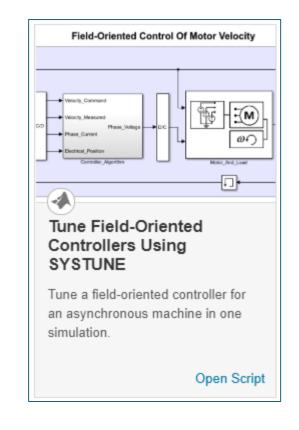
- Model field-oriented control algorithm
- Model sensor decoders or sensorless observers
- Tune loop gains

 Verify in closed-loop simulation


Bonus: you can use several techniques to tune loop gains

run rreducuel	= 20e3; %Hz	1	con	artar e/u fran
r pwm				switching time period
	1) I'm_Licque		2.011	britoming office period
the Set Sample		1.5	2120	
Ts	= T_pwm;			sample time for controller
				simulation time step for model simulation
				simulation sample time
Ts_inverter	= T_pwm/2;	\$sec	11	simulation time step for average value inverter
Is_speed	= 10*Ts;	*Sec	11	sample time for speed controller
ee Set data ty	pe for controlle	r & code-ger	1	
	ixdt(1,32,17);			
dataType = 'si	ngle';	% Floating	poin	nt code-generation
88 System Para	meters // Hardwa	re parameter	s	
nmam = mah Cor	PMSMMotorParamet	AND / I DT V1711		
pmsm = mcb_set	PMSPMOtorParamet	ers("bbii/it	1.11	
%% Parameters	below are not ma	ndatory for	offs	et computation
inverter = mcb	SetInverterPara	meters('DRV8	312-0	C2-KIT');
inverter.ADCOf	fsetCalibEnable	= 1; % Enabl	le: 1	Disable:0
target = mcb_S	etProcessorDetai	ls('F28069M'	, PWM	frequency);
A Domino (the	acteristics			
to berive char	mcb_getBaseSpeed	(pmsm, invert	:er);	%rpm // Base speed of motor at given Vdc
		(mmonter) .		
pmsm.N_base =	cteristics (pmsm,	invercer);		
pmsm.N_base = % mcb_getChara	cteristics(pmsm, letails // Set ba		or pu	conversion
pmsm.N_base = % mcb_getChara %% PU System d		se values fo		conversion
pmsm.N_base = % mcb_getChara %% PU System d PU_System = mc	etails // Set ba	se values fo	;	conversion

Empirical Computation

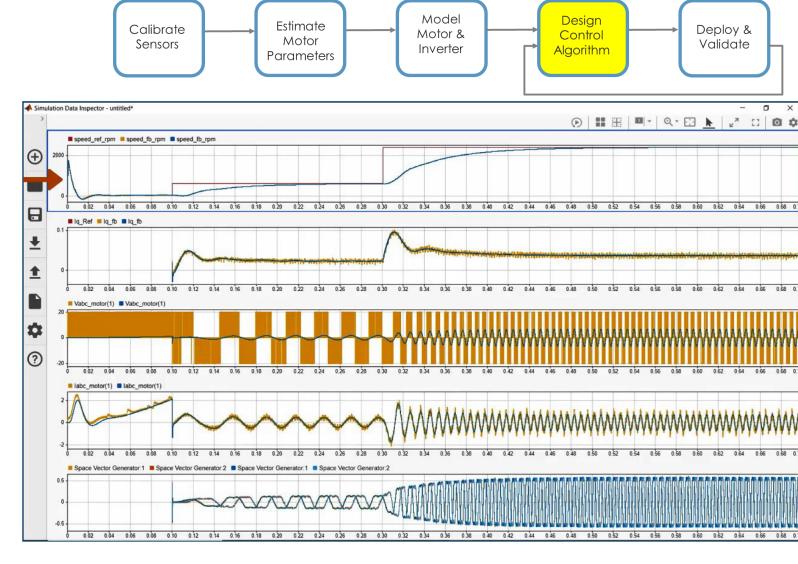

Motor Control Blockset

MATLAB EXPO

FOC Autotuner

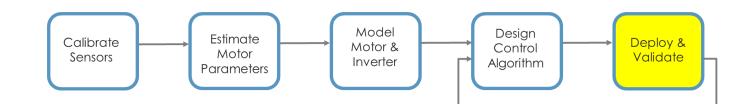
Motor Control Blockset and Simulink Control Design

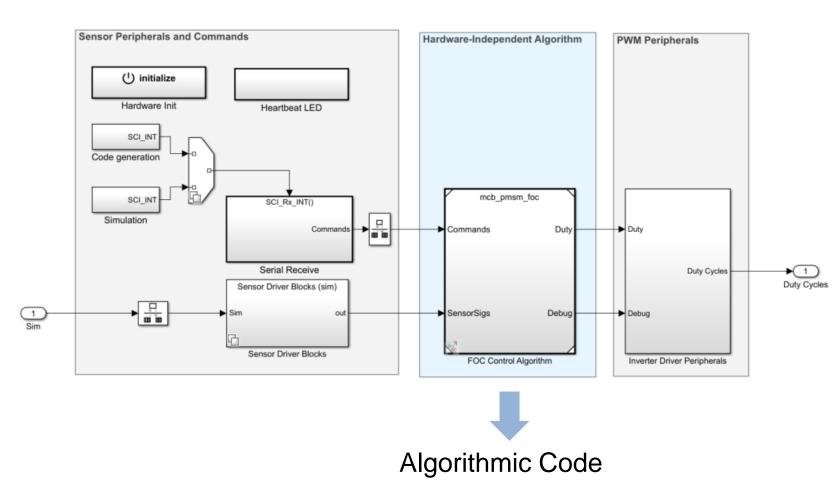
Classic Control Theory


Simulink Control Design

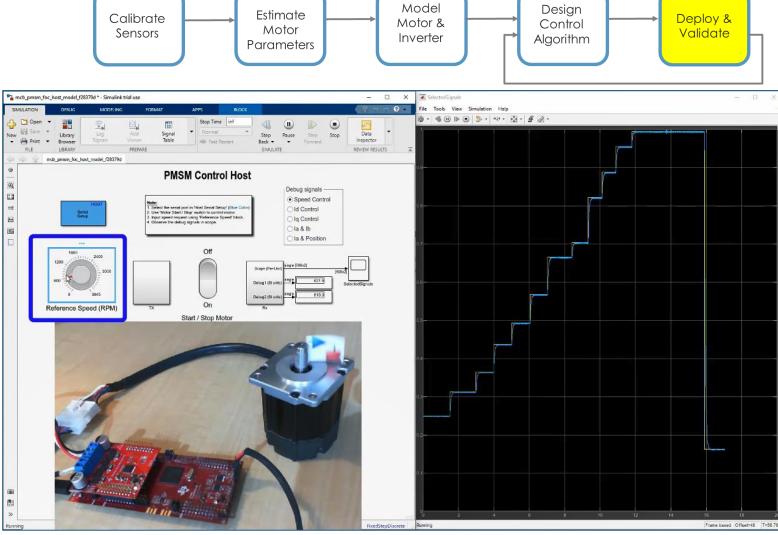
Control algorithm design

- Model field-oriented control algorithm
- Model sensor decoders or sensorless observers
- Tune loop gains


 Verify in closed-loop simulation



Deployment


- Target any processor with ANSI C code
- Use provided example to partition the model into algorithmic and hardware-specific parts
- Generate algorithmic code for integration into embedded application

Deployment

- Generate code (floating and fixed-point)
- Use host model to control and debug
- Validate on hardware

You can verify and profile code using Processor-In-the-Loop testing

Code Execution Profiling Report for mcb_pmsm_foc_sim_v2/Current Control1

The code execution profiling report provides metrics based on data collected from a SIL or PIL execution. Execution times are calculated from data recorded by instrumentation probes added to the SIL or PIL test harness or inside the code generated for each component. See <u>Code Execution</u> <u>Profiling</u> for more information.

1. Summary

Total time	50681790
Unit of time	ns
Command	report(executionProfile, 'Units', 'seconds', 'ScaleFactor', '1e- 09', 'NumericFormat', '%0.0f');
Timer frequency (ticks per second)	2e+08
Profiling data created	16-Jan-2020 18:09:48

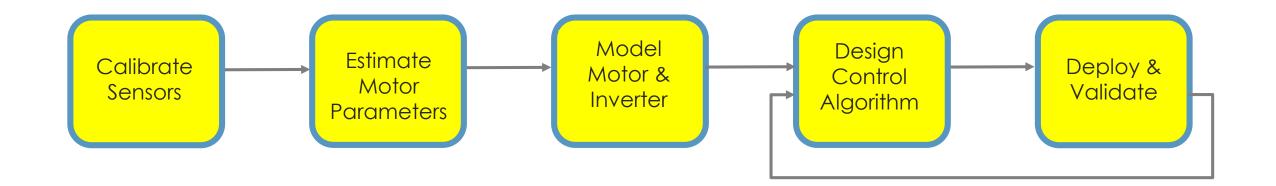
2. Profiled Sections of Code

Section	Maximum Execution Time in ns	Average Execution Time in ns		Average Self Time in ns	Calls	
[+] Current_initialize	2260	2260	1365	1365	1	*
Current_step [5e-05 0]	5135	5067	5135	5067	10001	*
Current_terminate	540	540	540	540	1	*

3. CPU Utilization

Task	Average CPU Utilization	Maximum CPU Utilization
Current_step [5e-05 0]	10.13%	10.27%
Overall CPU Utilization	10.13%	10.27%

Bonus: you can target FPGAs as well


1996		
a 🧉 📽 Find:	🕹 🖗 Match Case	
ontents unymary lock Summary ode Interface Report iming And Area Report	 HDL Code Generation Report Sum Summary 	nmary for focZynqHdl
High-level Resource Report	Model	focZyngHdl
ptimization Report	Model version	1.368
Distributed Pipelining	HDL Coder version	3.10
Streaming and Sharing	HDL code generated on	2017-04-21 14:19:09
Delay Balancing	HDL code generated for	focZyngHdl
Adaptive Pipelining Core Generation Report	Target Language	VHDL
Core Generation Report	Target Directory	hdl_prj\hdisrc
raceability Report	Non-default model properties	noi_pijinisie
	Non-default model properties ClockRatePipelining	off
Senerated Source Files	Non-default model properties ClockRatePipelining EnablePrefix	off oversampledClockEnable
ienerated Source Files ocZynqHd_ip_src_focZynqHdl_p!	Non-default model properties ClockRatePipelining EnablePrefix HDLSubsystem	off oversampledClockEnable focZyngHdl
ienerated Source Files ocZyngHd_ip_src_focZyngHdl_p ocZyngHd_ip_src_ADC_Count_T	Non-default model properties ClockRatePipelining EnablePrefix HDLSubsystem ModulePrefix	off oversampledClockEnable
ienerated Source Files ocZynqHd_ip_src_focZynqHdl_p ocZynqHd_ip_src_ADC_Count_T	Non-default model properties ClockRatePipelining EnablePrefix HDLSubsystem ModulePrefix OptimizationReport	off oversampledClockEnable focZyngHdl focZyngHd_ip_src_ on
Senerated Source Files ocZynqHd_ip_src_focZynqHdl_p ocZynqHd_ip_src_ADC_Count_T ocZynqHd_ip_src_Mod_Two_PI	Non-default model properties ClockRatePipelining EnablePrefix HDLSubsystem ModulePrefix OptimizationReport Oversampling	off oversampledClockEnable focZyngHdl focZyngHd_ip_src_ on 2000
ienerated Source Files ocZynqHd_ip_src_focZynqHdl_pi ocZynqHd_ip_src_ADC_Count_T ocZynqHd_ip_src_Mod_Two_Pi_ ocZynqHd_ip_src_Encoder_Cour	Non-default model properties ClockRatePipelining EnablePrefix HDLSubsystem ModulePrefix OptimizationReport Oversampling ReferenceDesign	off oversampledClockEnable focZynqHdl focZynqHd_ip_src_ on 2000 Motor Control Reference Design
ienerated Source Files ocZyngHd_ip_src_focZyngHdl_p ocZyngHd_ip_src_ADC_Count_T ocZyngHd_ip_src_Mod_Two_Pi_ ocZyngHd_ip_src_Encoder_Cour ocZyngHd_ip_src_Wrap_Neg_Pi	Non-default model properties ClockRatePipelining EnablePrefix HDLSubsystem ModulePrefix OptimizationReport Oversampling ReferenceDesign ResetType	off oversampledClockEnable focZynqHdl focZynqHd_ip_src_ on 2000 Motor Control Reference Design Synchronous
ienerated Source Files ocZynqHd_ip_src_focZynqHdl_p ocZynqHd_ip_src_ADC_Count_T ocZynqHd_ip_src_Mod_Two_Pi ocZynqHd_ip_src_Encoder_Cour ocZynqHd_ip_src_Wrap_Neg_Pi ocZynqHd_ip_src_Rotor_Position	Non-default model properties ClockRatePipelining EnablePrefix HDLSubsystem ModulePrefix OptimizationReport Oversampling ReferenceDesign ResetType ResourceReport	off oversampledClockEnable focZynqHdl focZynqHd_ip_src_ on 2000 Motor Control Reference Design Synchronous on
Senerated Source Files ocZynqHd_ip_src_focZynqHdl_p ocZynqHd_ip_src_ADC_Count_T ocZynqHd_ip_src_Mod_Two_Pi_ ocZynqHd_ip_src_Encoder_Cour ocZynqHd_ip_src_Encoder_Position ocZynqHd_ip_src_Rotor_Position	Non-default model properties ClockRatePipelining EnablePrefix HDLSubsystem ModulePrefix OptimizationReport Oversampling ReferenceDesign ResetType ResourceReport ScalarizePorts	off oversampledClockEnable focZynqHdl focZynqHd_ip_src_ on 2000 Motor Control Reference Design Synchronous on on
Senerated Source Files ocZyngHd_ip_src_focZyngHdl_p ocZyngHd_ip_src_ADC_Count_T ocZyngHd_ip_src_Mod_Two_Pi_ ocZyngHd_ip_src_Encoder_Cour ocZyngHd_ip_src_Encoder_Cour ocZyngHd_ip_src_Rotor_Position ocZyngHd_ip_src_Rotor_Position ocZyngHd_ip_src_Rotor_Position	Non-default model properties ClockRatePipelining EnablePrefix HDLSubsystem ModulePrefix OptimizationReport Oversampling ReferenceDesign ResetType ResourceReport ScalarizePorts	off oversampledClockEnable focZynqHdl focZynqHd_ip_src_ on 2000 Motor Control Reference Design Synchronous on

HDL Code Generation

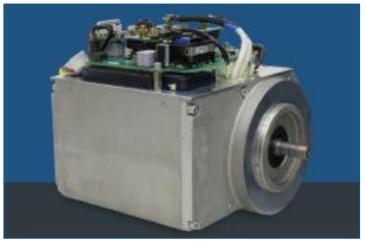
Workflow for implementing field-oriented control

ATB Technologies cuts electric motor controller development time by 50% using code generation for TI's C2000 MCU

Challenge

Develop control software to maximize the efficiency and performance of a permanent magnet synchronous motor

Solution


Use MathWorks tools for Model-Based Design to model, simulate, and implement the control system on a target processor

Results

Development time cut in half

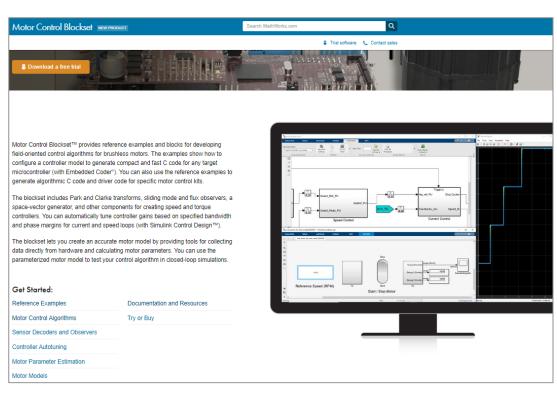
MATLAB EXPO

- Design reviews simplified
- Target verification and deployment accelerated

ATB Technologies permanent magnet synchronous motor.

"MathWorks tools enabled us to verify the quality of our design at multiple stages of development, and to produce a high-quality component within a short time frame."

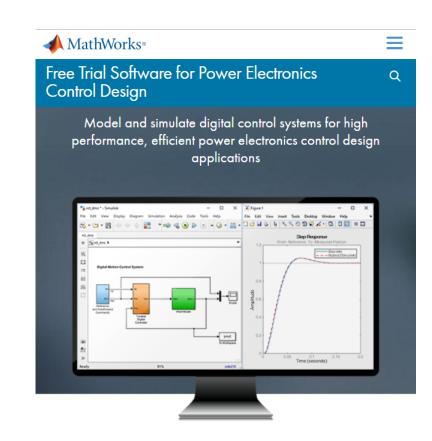
- Markus Schertler, ATB Technologies



Use Model-Based Design for your next motor control project!

 Verify control algorithm with desktop simulation

Generate compact and fast code from models


 Minimize development time using reference examples, built-in algorithmic blocks, automated parameter estimation, and gaintuning

Learn More

- Visit <u>mathworks.com/products/motor-control</u> and <u>mathworks.com/solutions/power-</u> <u>electronics-control</u>
- Attend other talks in Power Electronics track
- Get <u>power electronics control design trial</u> <u>package</u> with necessary tools for desktop modeling, simulation, control design, and production code generation of your next motor control project

START TODAY. Download and install the trial software package.

