MATLAB EXPO

Sensor Fusion and Navigation for Autonomous Systems Using MATLAB & Simulink

Smart autonomous package delivery

Capabilities of an Autonomous System

Some common Perception tasks

- Design localization algorithms
- Design environment mapping algorithms
- Design SLAM algorithms
- Design fusion and tracking algorithms
- Label sensor data
- Design deep learning networks
- Design radar algorithms
- Design vision algorithms
- Design lidar algorithms
- Generate C/C++ code

Capabilities of an Autonomous System

- Visualize street maps
- Connect to HERE HD Live Map
- Design local and global path planners
- Design vehicle motion behavior planners
- Design trajectory generation algorithms
- Generate C/C++ code

Capabilities of an Autonomous System

Some common Control tasks

- Connect to recorded and live CAN data
- Design reinforcement learning networks
- Model vehicle dynamics
- Automate regression testing
- Prototype on real-time hardware
- Design path tracking controllers
- Design model-predictive controllers
- Generate production C/C++ code
- Generate AUTOSAR code
- Certify for ISO26262

In this talk, you will learn

MATLAB and Simulink capabilities to design, simulate, test, deploy algorithms for sensor fusion and navigation algorithms

- Perception algorithm design
- Fusion sensor data to maintain situational awareness
- Mapping and Localization
- Path planning and path following control

Many options to bring sensor data to perception algorithms

Live data can be augmented for a more robust testbench

Simulate sensors

Estimate the pose using Monte Carlo Localization

What is the world around me? Egocentric occupancy maps

Dynamic Environment

erception • Localization Mapping • Tracking Planning Control

- Support dynamic environment changes
- Synchronization between global and local maps

What is the world around me? 3D Occupancy Map

Where am I in the unknown environment?

Simultaneous Localization and Mapping (SLAM)

Build a map of an unknown environment while simultaneously keeping track of robot's pose.

Simultaneous Localization and Mapping SLAM Map Builder App (2D only)

App enables more interactive and user-friendly workflow

Simultaneous Localization and Mapping 3D Lidar SLAM

Autonomous systems can track objects from Lidar point clouds

Track Objects Using Lidar: From Point Cloud to Track List

Track surrounding objects during automated lane change

2D radar can be used to track position, size, and orientation

Fusing multiple sensor modalities provides a better result

Radar and Lidar fusion can increase tracking performance

Find shortest path to the destination

Find shortest path to the destination

Urban driving needs planning on two levels, global and local

Generate optimal trajectories for local re-planning and merge back with the global plan

Simulate shortest path to change lanes on a highway

Simulate trajectory generation and the lane change maneuver

Mission planning for UAV leads to last mile delivery

Choose a path planner based on your application

10 20 30 40 50 60 70 X (meters)

Send control commands to the vehicle to follow the planned path

MATLAB EXPO

25

Avoid pedestrian (dynamic obstacles) in a parking lot

Define control commands to avoid potential collision

5 ②・描・

25

20 15 10

Vehiclelr

assessment

RefVe

VehicleInfo

÷ Observer

0

-15 -20

-25

-10

Copyright 2018 The MathWorks, Inc

0 5

Control lane change maneuver for highway driving

Longitudinal and Lateral Controllers to adjust the acceleration and steering

Simulate high-fidelity UAV model with waypoint following

AirSpeed

RollAngle

Height

MathWork

Approximate High-Fidelity Model with Low-Fidelity Model

Generate code and deploy sensor fusion and navigation algorithms

MATLAB Coder™

Simulink Coder™

In this talk, we learnt about..

Full Model Based Design Workflow for Autonomous Systems Verification & Validation Code Generation Connect / Deploy Code Generation

 Platform
 MATLAB
 Simulink

There are many resources to get started with

ypes of Tracking Filters and How to Choose the Right One Alpho-Beto Sub-optimal Kalman Ontrael for lawar and Uses linearized models to pro Extended Kolmo ~ Samples the uncertain Unscented Kalman \checkmark ~ propagate it. May become numerica unstable in single-precision. 1 \checkmark Samples the uncertainty covaria propagate it. Numerically stable Cubature Kalman Assumes a veighted sum Good for partially abservable cases (e.g., angle-only tracking). \checkmark Assumes a weighted sum of distributions Interacting Multiple Models [WWI] Multiple Models Moneuvering objects (e.g., accelerates, turns) Particle ~ and be any another the uncertainty detribution store Quick Start Guide

Part 1: What is Sensor Fusion?

This video provides an overview of what sensor fusion is and how it helps in the design of autonomous systems. It also covers a few scenarios that illustrate the various ways in which sensor fusion can be implemented.

Part 2: Fusing a Mag, Accel, and Gyro to Estimate Orientation

This video describes how we can use a magnetometer, accelerometer, and a gyro to estimate an object's orientation. The goal is to show how these sensors contribute to the solution, and to explain a few things to watch out for along the way.

Create Egocentric Occupancy Maps using Range Sensors

Create an egocentric occupancy map by using ray-tracing with our rangeSensor sensor model.

Open Live Script

Simulate an automated lane chang maneuver system for highway driving scenario.

Open Live Script

Please visit our Tech Showcase demos

Thank you!

Questions?

