MATLAB

Implementing and Real-Time Testing of a Grid-Tied Solar Inverter Controller Carlos Villegas and Jonathan LeSage

Key Takeaways

- Simplify control development for power electronics using Simscape Electrical and Speedgoat hardware
- Automatically generate C and HDL code for plant simulations and production code from Simulink and Simscape Electrical
- Use hardware-in-the-loop to test normal operation and fault conditions such as Fault-Ride Through

Simulink and Speedgoat are a common platform for control design and testing

-

About Speedgoat

- A MathWorks associate company, incorporated in 2006 by former MathWorks employees. Headquarters in Switzerland, with subsidiaries in the USA and Germany
- Provider of real-time target computers, expressly designed for use with Simulink
- Real-time core team of around 200 people within MathWorks and Speedgoat. Closely working with the entire MathWorks organization employing around 5,000 people worldwide

What is Our Goal?

Primary goal is to design power electronics hardware and controllers

Hardware (Plant)

What is Our Goal?

- Primary goal is to design power electronics hardware and controllers
 - Hardware in the loop (HIL) testing can improve this process

What is Hardware in the Loop (HIL) Testing

• HIL replaces the power electronics hardware with a virtual simulation

What is Hardware in the Loop (HIL) Testing

- HIL replaces the power electronics hardware with a virtual simulation
 - Controller can operate as if in the real system

Virtual Simulation (Plant)

Advantages of Hardware in the Loop (HIL) Testing

- Can replace prototypes or production hardware with a real-time system
- Easier to automate testing and **test grid code fault scenarios**
- Safer than most power electronics hardware
- Start many design/test tasks earlier

Virtual Simulation (Plant)

Controller

Protecting the Utility Grid

Model Based Design for Power Electronics

Overview of Solar Inverter Control Development

- Plant Modeling (Photovoltaic plant, Inverter, Grid)
- Control Design (Grid synchronization, MPPT algorithm)
- 3 Automatic Code Generation (Deploy code to TI C2000 and Speedgoat hardware)
 - Hardware-in-the-Loop Testing (Controller verification with Speedgoat hardware)

1 Plant Modelling

Schematic-based modeling with common power electronics topology

Plant Modelling

>>

Ready

2 Control Design PID Tuning of Power Electronics – Leverage Average-Value Models

2 Control Design PID Tuning of Solar Inverter – Leverage Average-Value Models

2 Control Design PID Tuning of Solar Inverter – Leverage Average-Value Models

2 Control Design PID Tuning of Solar Inverter – Leverage Average-Value Models

- **2** Control Design MPPT
- Using inverter control to track maximum power point

Learn more: <u>Webinar on Modeling, Simulating,</u> and Generating Code for a Solar Inverter

2 Control Design

Designing Fault-Ride Through Algorithms

Reactive power support during low voltage fault

2 Control Design **Fault-Ride Through**

Testing Fault-Ride Through against Grid Codes such as IEEE 1547-2018

Learn more: Webinar on Renewable Grid Integration Studies

real-time simulation and testing

MathWorks

2 Control Design Simulation Results

3 Automatic Code Generation Microcontroller

Use Embedded Coder and C2000 hardware support package

3 Automatic Code Generation Speedgoat Real-Time Simulator

- Use Simulink Real-Time and HDL Coder for C and HDL code generation
- Deploy to multi-core CPUs or multiple FPGAs
- Wide range of I/O connectivity, communication protocols and I/O functionality

4 Hardware-in-the-Loop Testing

- Reuse models at different levels of fidelity in CPUs and FPGAs
- Automatic code generation
 - Multi-core CPUs using Simulink Real-Time
 - Simulink-programmable FPGAs using HDL Coder
- Compatibility of Simulink, V&V tools and Speedgoat hardware
- HIL simulation with switching dynamics
 - CPU workflow up to around 5 KHz switching
 - FPGA workflow up to around 100 kHz switching

4 Hardware-in-the-Loop Testing

Conclusion

- Simplify control development for power electronics using Simscape Electrical and Speedgoat hardware
- Automatically generate C and HDL code for plant simulations and production code from Simulink and Simscape Electrical
- Use hardware-in-the-loop to test normal operation and fault conditions like Fault-Ride Through

Learn More

- <u>www.speedgoat.com</u> Speedgoat real-time solutions
- <u>Developing Solar Inverter Control with Simulink</u> video series
- <u>HIL for Power Electronics</u>-whitepaper
- Detailed Model of 100 kW Grid-Connected PV Array example
- <u>MPPT Algorithm</u> webpage

