

Digital Twins for Industrial IoT [Presenter Name]

The growth of smart connected systems across many industries

Aerospace and Defense

Automotive

Biotech and Pharmaceutical

Communications

Electronics

Energy Production

Industrial Machinery

Medical Devices

Process Manufacturing

Railway Systems

Semiconductors

Software and Internet

Why make your systems connected and smart?

Do things better: Optimize your customer's experience

- Anomaly detection
- Predictive maintenance
- Asset performance management
- Operations optimization
- Fleet management
- · Feedback to design

Do new things: Transform with new business models and opportunities

From selling a system... To selling the system's operation, the capability as a service, etc.

MathWorks Customers Using Digital Twins and IIoT

Atlas Copco maintains Digital Thread for 120K air compressor systems

Fuji Electric analyzes real-time behavior of distributed power systems

Schindler Elevator performs virtual commissioning with 20K system variants

Lockheed predicts and optimizes aircraft fleet performance

Renoir Consulting predicts real-time performance of drilling rig

BuildingIQ provides predictive energy optimization for buildings

Newcrest Mining maximizes copper plant efficiency and predicts onset of failures

Korea institute creates self-diagnosing chip manufacturing vacuum pumps

Tata Steel optimizes operation to save 40% energy on cooling towers

NIO improves battery state-of-health for electric vehicle fleet

Data Volume, Movement, Latency, and Location

Infusing the "Smart" in your systems that are smart and connected...

Multiple Roles Needed to Implement Algorithms for Applications

Multiple Roles Needed to Implement Algorithms for Applications

Example: Machine learning model for anomaly detection of assets

Example: Machine learning model for anomaly detection of assets

DIGITAL TWIN - DIGITAL REPRESENTATION OF AN ASSET, REGULARLY UPDATED TO REFLECT THE CURRENT STATE OF A SPECIFIC OPERATING ASSET

Key Puzzles and Challenges

- How to leverage asset data as it's streamed, processed, and archived?
- How can algorithm experts and infrastructure experts collaborate better?
- How to leverage the IT/OT technologies, especially as they change?
- How to incrementally add functionality as needs and applications evolve?
- How to create and use digital twins?
- How to verify and validate?

A Demo Illustrates How to Address These Challenges

Physics-based Digital Twins to Explore "What-if" Scenarios

Demo: Use Physics-based Digital Twins to Explore "What-if" Scenarios

STEPS:

- 1. Create operational digital twin, reusing system design knowledge and models
- 2. Tune digital twin realizations to match each operating asset, using recent data streamed from the deployed fleet
- 3. Explore possible future scenarios for each asset, using its digital twin
- 4. Use digital twins to assess the OT/IT capacity to support large numbers of assets

Digital Twin for "What if" Analysis of a Hydraulic Pump 1. Model the physical asset

Digital Twin for "What if" Analysis of a Hydraulic Pump Detail: Range of modeling methods for Digital Twins

Physics-Based

- Dynamical models of systems/components
- Electrical, mechanical, algorithms, etc.
- Include third-party models, e.g., FE models via FMI

Data-Driven

24 \$ Predicted state and covariance 25 = x_prd = A * x_est; 26 = p_prd = A * p_est * A' + 0; 27 28 \$ Estimation 39 = Q^ = A * n_prd * R' + R; 30 = B * n_prd * R' + R; 31 = kim_gain = (S \ B)'; 32 \$ Estimated #pate and covariance 34 = X_est = x_prd + kim_gain * (I - H * x_prd); 35 = p_est = n_prd - kim_gain * H * n_prd; 36 37 \$ Compute the estimated measurements 38 = y = X * x_est;

- Kalman estimator
- System identification
- etc.

- Deep Learning
- etc.

Factors in choosing:

- Do you have knowledge of system's physics or only operational data?
- What does your application need?
- Who has the expertise needed to create it?

Digital Twin for "What if" Analysis of a Hydraulic Pump Our Approach for Digital Twins

- Enable you to create, modify, and operationalize your own physics-based, data-driven, and AI-based models, using MATLAB and Simulink
 - Foundation skills already exist in most organizations
 - Tools designed, documented, and supported so engineers can use on their own
 - Supports inclusion of models from other tools and languages
- Enable model reuse from your Model-Based Design workflows
 - Physics-based and data-driven models already created by your subject matter experts
 - Support a Digital Thread from development to deployment to operationalization
- Enable your equipment provider to share their models with you
 - Especially powerful when they use Model-Based Design themselves
 - Proven capabilities for sharing models (e.g., used between automotive OEMs and suppliers), including protection of IP in models

Digital Twin for "What if" Analysis of a Hydraulic Pump 1. Model the physical asset

Digital Twin for "What if" Analysis of a Hydraulic Pump 2. On OT system, tune model using streaming data so model matches asset

Digital Twin for "What if" Analysis of a Hydraulic Pump

Detail: Model-tuning approach, and how to preprocess data and confirm resulting model, may vary from application to application

- The tuning data could be batched or recent history, not only streaming
- Tuning options include optimization-based parameter tuning, model following, machine learning retraining, and supervised online learning, etc.

Digital Twin for "What if" Analysis of a Hydraulic Pump 3. Tune models for all assets, to generate a set of Digital Twins

Digital Twin for "What if" Analysis of a Hydraulic Pump 4. Simulate many possible future scenarios using Digital Twins

Digital Twin for "What if" Analysis of a Hydraulic Pump Example: Use Digital Twins to assess future operating envelopes of pumps

- For each pump, use parallel simulations to generate the pressure map for many different load configurations
- This surface plot shows lines of constant pressure. Within the range of available RPM values (1000-1440), there are regions where certain load requests could not be maintained (e.g., you can't spin the pump fast enough).

Digital Twin for "What if" Analysis of a Hydraulic Pump 4. Simulate many possible future scenarios using Digital Twins

Digital Twin for "What if" Analysis of a Hydraulic Pump 5. Simulating a lot of assets to exercise the IT/OT infrastructure

Atlas Copco maintains Digital Thread for 120K air compressor systems

Fuji Electric analyzes real-time behavior of distributed power systems

Schindler Elevator performs virtual commissioning with 20K system variants

Lockheed predicts and optimizes aircraft fleet performance

Renoir Consulting predicts real-time performance of drilling rig

BuildingIQ provides predictive energy optimization for buildings

Newcrest Mining maximizes copper plant efficiency and predicts onset of failures

Korea institute creates self-diagnosing chip manufacturing vacuum pumps

Tata Steel optimizes operation to save 40% energy on cooling towers

NIO improves battery state-of-health for electric vehicle fleet

MathWorks Industrial IoT and Digital Twin Advisory Service

- Digital Twin creation and implementation
- Application business value explorations and evaluation
- Maximize reuse of MathWorks Artifacts
 - Design-to-Operation across Application stages
 - Leverage other workflows (e.g. MBD, Virtual Commissioning, etc.)
- Infrastructure and Architecture
- Software Development processes for MATLAB or Simulink-based algorithms/models
- Focus Industries
 - Industrial, Aerospace, Automotive, Medical, Manufacturing, Oil and Gas

MathWorks consulting can partner with you to identify one or more focus areas in your company's Digital Transformation, and work through a specific plan so you are in control of your improved processes, tools, and design work

With MATLAB and Simulink create algorithms and models that allow you to...

Do things better: Optimize your customer's experience

Do new things: Transform with new business models and opportunities

- www.mathworks.com/digital-twin
- www.mathworks.com/iot
- [visit booth/demo station]
- Contact us to for further discussions

