MATLAB EXPO 2018

Modeling and Simulation of Physical Systems with Simscape

Paul Lambrechts Tadele Shiferaw Tadele

Modeling and Simulation of Physical Systems with Simscape

- What's physical modeling and why should I care?
- Working with a multi-domain physical model in Simscape
 - An electrically driven triplex plunger pump for a predictive maintenance study
- Extending the model to explore a new design element
 - Adding a battery model to the design
- Key take-aways of the session

Physical Modeling with Simscape is easy and accurate!

MathWorks[®]

The Big Question?

- Why Physical Modeling?
- Why in Simulink/Simscape?

The CAT Triplex Plunger Pump

Predictive Maintenance?

Pressure transducer is available

Translate	Turn off instant translation						
English Spanish French -	+	English Russian Greek - Translate					
M M M	I need help. One of my cylinders is leaking. I will shut down in 15 hours						
0	1/5000						

Triplex Pump

- Crankshaft drives three plungers
 - Each 120 degrees out of phase
 - One chamber always discharging
 - Smoother flow than single or duplex piston pumps

8

Introduction to Simscape Multibody

- Enables multibody simulation of 3D mechanical systems
- Construct model using bodies, joints, and forces
 - Model matches structure of system
 - No need to derive and program equations
- Primary uses
 - System-level analysis
 - Control development in Simulink
 - Predictive Maintenance study

Modeling Dynamic Systems: two approaches

First-Principles Modeling

Use an understanding of the system's physics to derive a mathematical representation

Modeling Dynamic Systems: two approaches

First-Principles Modeling

Data-Driven Modeling

Use an understanding of the system's physics to derive a mathematical representation

Use system test data to derive a mathematical representation

Both have Advantages & Disadvantages

First-Principles Modeling

Data-Driven Modeling

Advantages:

- Insight in behavior
- Physical parameters

Disadvantages:

- Friction and turbulence?
- Time consuming
- Requires expertise

Advantages:

- Fast
- Accurate

Disadvantages:

- Requires plant
- Requires data acquisition system

Tools that span both modeling approaches Enhance Advantages, Reduce Disadvantages

MATLAB EXPO 2018 13

Tools that span both modeling approaches Enhance Advantages, Reduce Disadvantages

First-Principles Modeling in Simulink

Traditional process

Goal of Simscape

 As easy to use as Simulink; but easier to use for creating a model of a physical system

16

Simscape: modeling in multiple domains

 Use Fundamental Analogy between Physical Domains

Domain	Across Variable	Through Variable				
Mechanical	Velocity Angular Velocity	Force Torque				
Hydraulic	Pressure	Flow Rate				
Electrical	Voltage	Current				
Magnetic	MMF	Flux				
Thermal	Temperature	Heat Flow				
Thermal Fluids	Pressure Temperature	Mass Flow Rate Energy Flow				

How things are measured

Tools that span both modeling approaches Enhance Advantages, Reduce Disadvantages

Simscape Language

- MATLAB-based
- Create new domains
- Custom components
- User defined libraries
- Object oriented

500

0

Help

Block Parameters: Lossy Ultracapacitor

Models an ultracapacitor with resistive losses.

Cancel

View source for Lossy Ultracapacitor

Nominal capacitance C0 at V=0:

Effective series resistance:

Self-discharge resistance:

Initial voltage:

Rate of change of C with voltage V:

Lossy Ultracapacitor

Parameters

Simscape Language: setup

- Syntax closely follows MATLAB language
- Use MATLAB functions and expressions
 - Analyze parameters
 - Perform preliminary computations
 - Initialize system variables

Editor - C:\Lossy_Capacitor.ssc											×				
File	Edit	Text	Go	Tools	Debug	Desktop	Window	Help					з	N	×
20		fur	icti	ion	setu	р									
21		ſi	fF	₹ <=	{ 0	,'Oh	m'}								
22			er	ror	('Re	sista	nce m	ust	be grea	ter t	han	zer	۰٥,)	
23		e	nd											J	
24	<pre>4 through(i, p.i, n.i); % Through variable i</pre>														
25	across(v, p.v, n.v); % Across variable v														
26		V	/ c =	= VØ	;										
27		end													•
							Simscape	e model	file	Ln	1	Col	1	OVR	

Simscape Language: nodes

- Define the physical network ports
- Reuse existing physical domains to extend an existing library
- Define new physical domains to create a new library

Simscape Language: parameters

8

10

11

12

13 14

end

 Parameters, default values, units, and dialog box text all defined in the Simscape file (extension .SSC)

Simscape Language: equation

 Equations defined implicitly means no predefined inputs and outputs

$$i = (C_0 + C_v v) \frac{dv_c}{dt} + \frac{v}{R_d}$$
$$v = v_c + iR$$

Editor - C:\Lossy_Capacitor.ssc - 🗆 × File Edit Text Go Tools Debug Desktop Window Help N 5 X equation 28 i == (C0 + Cv*v)*vc.der + vc/Rd; % Equation 1 29 v == vc + i*R; % Equation 2 30 31 end **4** Simscape model file Ln 41 Col 26 OVR

Modeling and Simulation of Physical Systems with Simscape

- What's physical modeling and why should I care?
- Working with a multi-domain physical model in Simscape
 - An electrically driven triplex plunger pump for a predictive maintenance study
- Extending the model to explore a new design element
 - Adding a battery model to the design
- Key take-aways of the session

Battery Management System

- BMS is necessary
 - Safety
 - Performance
 - Durability

Battery Management System

- BMS includes
 - Monitoring :
 - State of Charge (SoC)
 - State of Health (SoH)
 - Control:
 - Charging
 - Temperature
 - Current

Competent Battery Model

- Battery Modeling
 - Equivalent Circuit Model
 - Parameter Estimation

SOC Simscape POW

R_table

2

29

Battery Management System

- Charging Control:
 - CCCV Charging method
 - Cell Balancing Ensure all cells have equivalent SoC during charging.

Physical Modeling with Simscape is easy and accurate!

MathWorks[®]

Physical Modeling Training

- Simscape
- Multibody
- Fluids
- Electrical Power
- Driveline

Exhibition MathWorks Training Booth

The MathWorks

Consulting Service

Thank you for attending...

- More support
- Visit <u>www.mathworks.com</u>
- Info: paul.lambrechts@mathworks.com tadele.tadele@mathworks.com
- Triplex Pump Case Study available on

The MathWorks

Training Services

https://www.mathworks.com/matlabcentral/fileexchange/65605-predictive-maintenance-in-hydraulic-pump

The MathWorks

The MathWorks

Book Program

Connections Program