vintecc

vintecc

Partners in Machine Software Development

Core Activities

- Digital Twins & Process Simulation
- Algorithm & Software Development
- Machine Diagnostics

Contact details

- Office:
 Meensesteenweg 385-389, B-8501 Kortrijk (Bissegem)

 Tel:
 +32 (0) 495 216 227
- Email: info@vintecc.com

CONTENT

- Vintecc
- Virtual commissioning
- Virtual commissioning of an AGV using sensor simulation

vintecc

Partners in Machine Software Development

DIGITAL TWINS & SIMULATION

- Process Simulation
- Virtual commissioning
- Automated testing

- Process Control
- Sensor Technologies
- Code generation

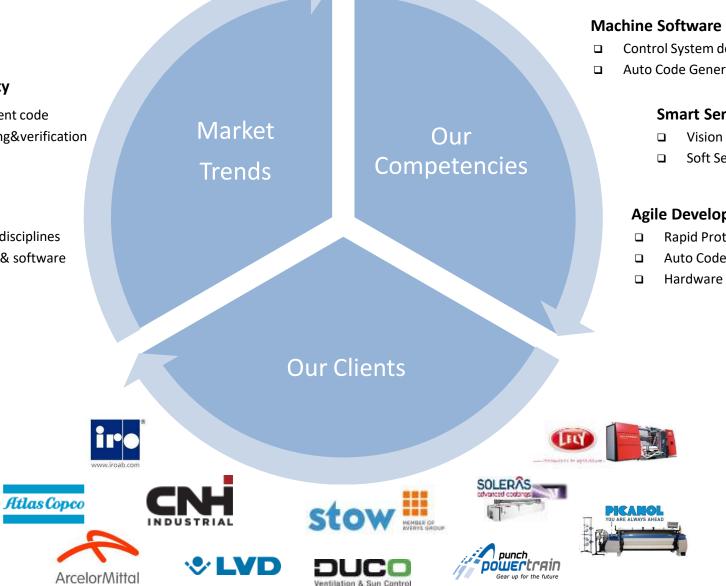
4-))

MACHINE DIAGNOSTICS

- Component / System Diagnostics
- Data Analytics
- IoT

TRENDS

Faster Time-to-market

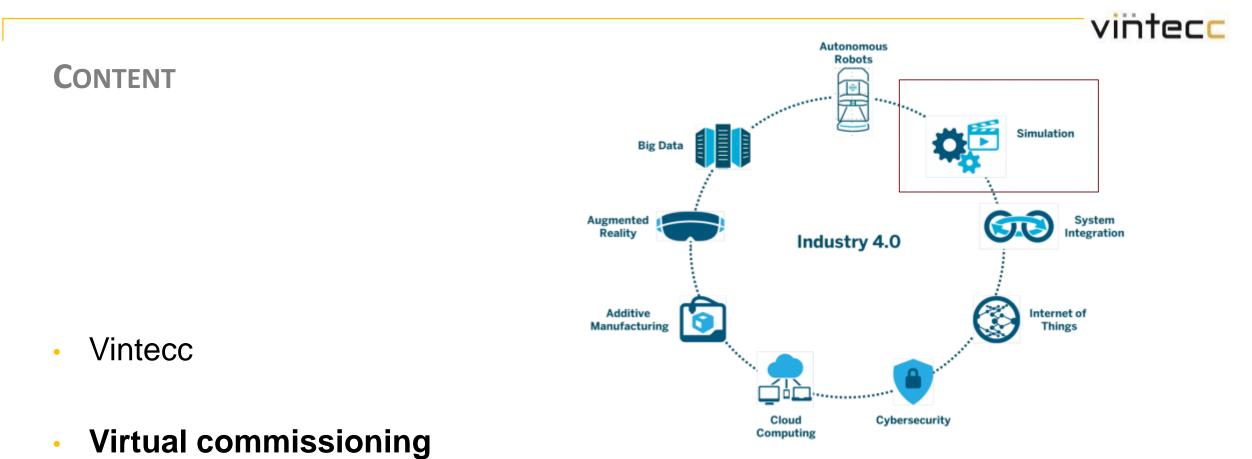

- ROI (+More resources for innovation)
- Early mover advantage

System Safety / Quality

- IEC 61131-3 complient code
- Requirements tracing&verification

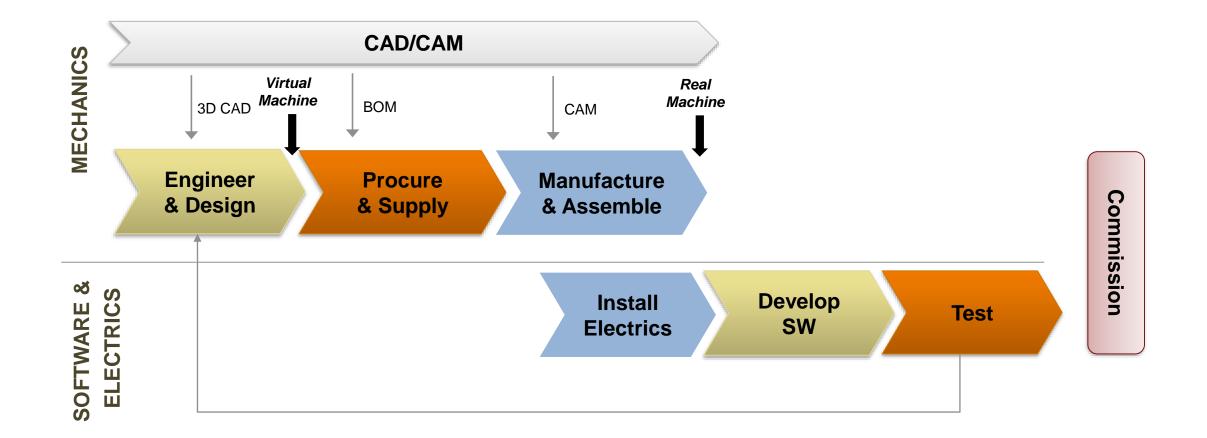
Complexity / Performance

- Closer interaction of multiple eng disciplines
- More automation = more sensors & software

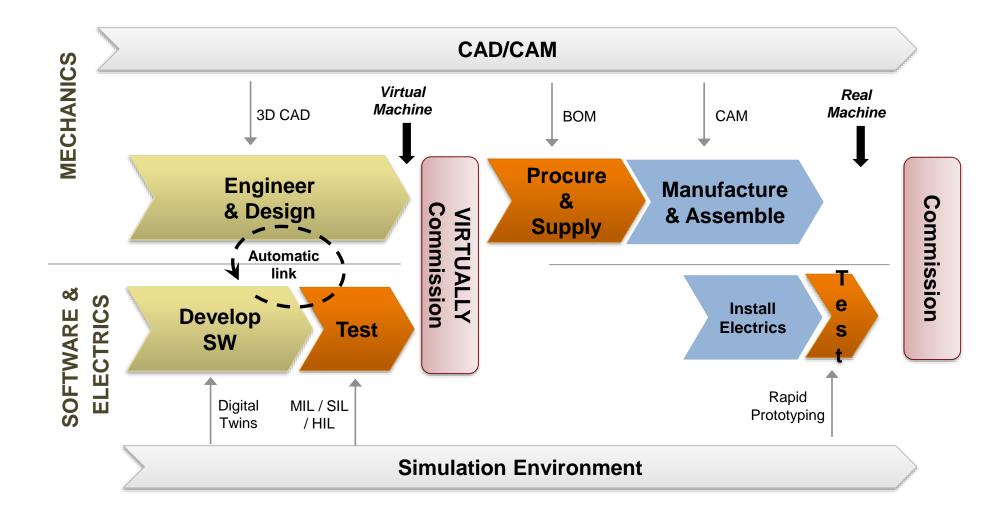

- Black/white box modeling
- Design verification (MIL/SIL/HIL)
 - Control System development
 - Auto Code Generation

Smart Sensors

Soft Sensors

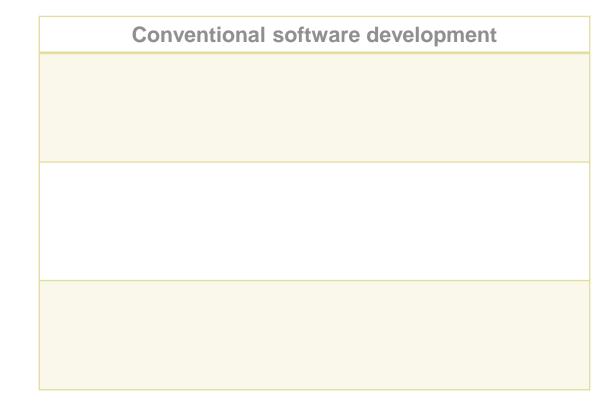

Agile Development

- **Rapid Prototyping**
- Auto Code Generation
- Hardware Independent



- Virtual commissioning of an AGV using sensor simulation

VIRTUAL COMMISSIONING VS CONVENTIONAL SOFTWARE DEVELOPMENT



VIRTUAL COMMISSIONING VS CONVENTIONAL SOFTWARE DEVELOPMENT

vintecc

VIRTUAL COMMISSIONING - WHY ?

VIRTUAL COMMISSIONING - WHY ?

Conventional software development

Physical Machine


- Availability
- Expensive and limited testing opportunity

Maintainability/complexity

- Every change is a risk of breaking something
- Struggle to deliver in time keeping up with competition

Sequential Development

- Switching costs increase exponentially
- Slow Iterative development cycles

VIRTUAL COMMISSIONING - WHY ?

Conventional software development	Virtual commissioning
Physical Machine	
Availability	
Expensive and limited testing opportunity	
Maintainability/complexity	
Every change is a risk of breaking something	
Struggle to deliver in time keeping up with competition	
Sequential Development	
Switching costs increase exponentially	
Slow Iterative development cycles	
Software	Real Machine
	Actuators
CPU	
	Sensors
Т	

CONTENT

- Vintecc
- Virtual commissioning
- Virtual commissioning of an AGV using sensor simulation

STOW PALLET SHUTTLE

vintecc

The Company

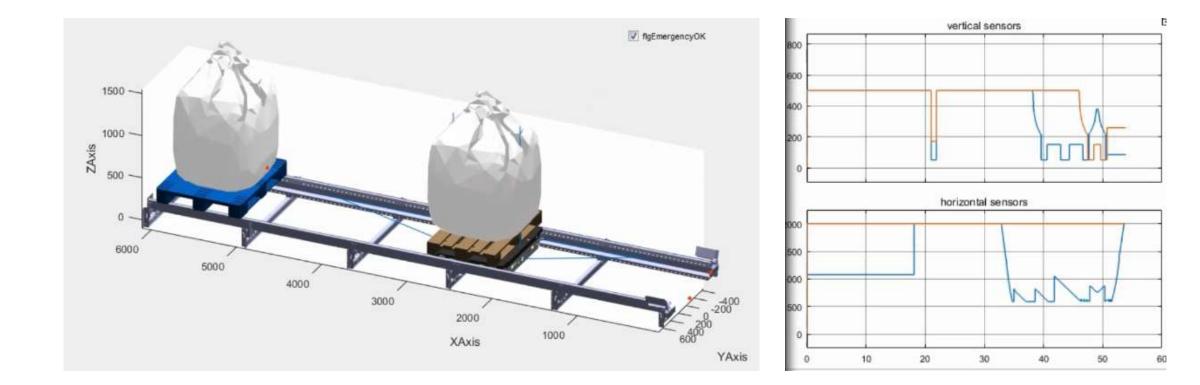
- Averys group, 750 employees
- Worldwide service organisation
- Pallet racking and shelving systems

The project

- Custom controller board and legacy code base preventing new feature development
- Conversion to full model-based software
 - Series product based on beckhoff target
 - Hardware independence due to model based workflow
 - Simulation (sensors, drives,...) allows to add new and complex features ... fast

Conventional software development	Virtual commissioning
 Physical Machine Availability (concept vs variant) Expensive and <u>limited</u> testing opportunity 	 Digital Twin Variant is a parameter Test (hazardous, expensive) situations at endless repeatability
 Maintainability/complexity Every change is a risk of breaking something Struggle to deliver in time keeping up with competition 	
 Sequential Development Switching costs increase exponentially Slow Iterative development cycles 	
Software	Virtual Machine Actuators Sensors

vintecc


WHY?

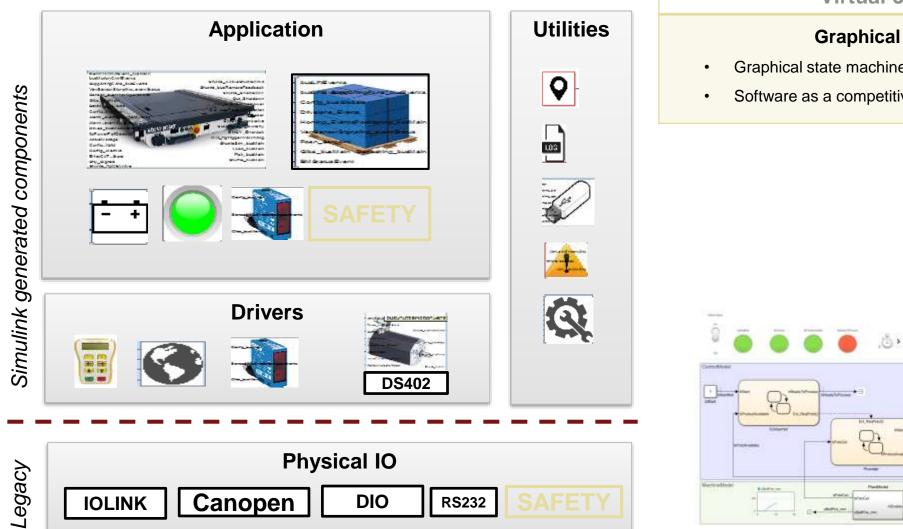
- Import from CAD
- Sensor simulation

Virtual commissioning

Digital Twin

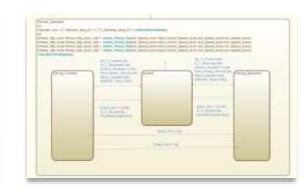
- Variant is a parameter
- Test (hazardous, expensive) situations at endless repeatability

Conventional software development	Virtual commissioning
 Physical Machine Availability (concept vs variant) Expensive and <u>limited</u> testing opportunity 	 Digital Twin Variant is a parameter Test (hazardous, expensive) situations at endless repeatability
 Maintainability/complexity Every change is a risk of breaking something Struggle to deliver in time keeping up with competition 	
 Sequential Development Switching costs increase exponentially Slow Iterative development cycles 	
Software	Virtual Machine Actuators Sensors



Conventional software development	Virtual commissioning
 Physical Machine Availability (concept vs variant) Expensive and <u>limited</u> testing opportunity 	Digital Twin• Variant is a parameter• Test (hazardous, expensive) situations at endless repeatability
 Maintainability/complexity Every change is a risk of breaking something Struggle to deliver in time keeping up with competition 	 Graphical programming Graphical state machines Software as a competitive advantage
 Sequential Development Switching costs increase exponentially Slow Iterative development cycles 	

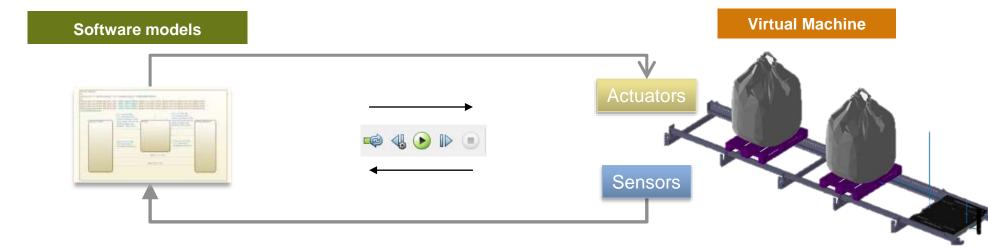
WHY ?



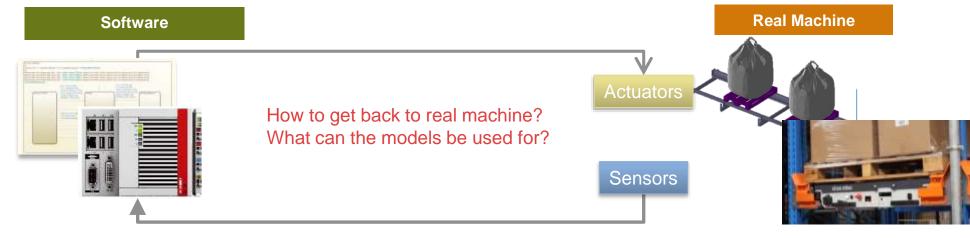
Virtual commissioning

Graphical programming

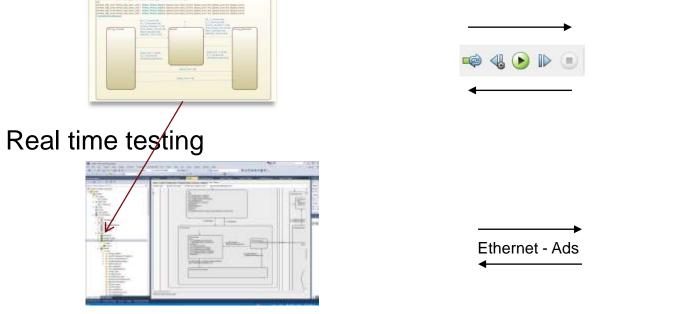
- Graphical state machines
- Software as a competitive advantage



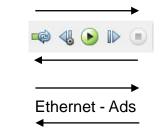
Conventional software development	Virtual commissioning
 Physical Machine Availability (concept vs variant) Expensive and <u>limited</u> testing opportunity 	Digital Twin• Variant is a parameter• Test (hazardous, expensive) situations at endless repeatability
 Maintainability/complexity Every change is a risk of breaking something Struggle to deliver in time keeping up with competition 	 Graphical programming Graphical state machines Software as a competitive advantage
 Switching costs increase exponentially Slow Iterative development cycles 	


Conventional software development	Virtual commissioning
 Physical Machine Availability (concept vs variant) Expensive and <u>limited</u> testing opportunity 	Digital Twin• Variant is a parameter• Test (hazardous, expensive) situations at endless repeatability
 Maintainability/complexity Every change is a risk of breaking something Struggle to deliver in time keeping up with competition 	 Graphical programming Graphical state machines Software as a competitive advantage
 Switching costs increase exponentially Slow Iterative development cycles 	 Co-development Co-simulation of mechanics, sensors & software from day 1 Make right choices from the start

INTEGRATION ?


Conventional software development	Virtual commissioning
 Physical Machine Availability (concept vs variant) Expensive and <u>limited</u> testing opportunity 	 Digital Twin Variant is a parameter Test (hazardous, expensive) situations at endless repeatability
 Maintainability/complexity Every change is a risk of breaking something Struggle to deliver in time keeping up with competition 	 Graphical programming Graphical state machines Software as a competitive advantage
 Sequential Development Switching costs increase exponentially Slow Iterative development cycles 	 Co-development Co-simulation of mechanics, sensors & software from day 1 Make right choices from the start

VIRTUAL COMMISSIONING – WORKFLOW – REUSE OF MODELS


Simulation 1.

2.

Automated testing (HIL / PIL / MIL) 3.

Statemachines Sensor simulation 3D/2D/1D Static vs dynamic Scopes **Breakpoints**

External mode Twincat measurement **Breakpoints** ADS interface/soft realtime

SENSOR SIMULATION – 3D

vintecc

• Sensor simulation not limited to 1D

CONCLUSION – VIRTUAL COMMISSIONING – WHY ?

1. Decrease development time

- Fast development of complex machine/features
 - Start when no hardware is available (or variant not available)
 - "One-click" from Concept Validation to Rapid Prototyping

2. Manage complexity

- Graphical programming
 - Easy to understand & explain
 - Manage Statemachines
 - Self Documenting (generate HTML)
- Auto-Code generation
 - Avoid manual coding mistakes

3. Increase maintainability

- Hardware independent software
 - From Model to PLC / C / C++ code
- Reproduce in-field scenarios
 - Special scenario's (safety!)
 - Test particular situation that occured at customer
- Training of customers & service engineers

... and many other use cases

SOLERÂS advanced coatings

Thanks for your attention

AND TELL US ABOUT YOUR PROJECT!