

Model-Based Design for Medical Applications using HDL Coder

Rob Reilink, M.Sc Ph.D

DEMCON Profile

- Established in 1993 (25 yr)
- ~ 500 employees
- ~€50M turnover
- >10 year experience with Model-Based Design

Use case: precision cut surgical instrument

- Piezo actuator driven by adjustable sine wave
- Class-D power amplifier for energy efficiency
- Business case: more compact, more energy-efficient, more flexible

Frequency domain behavior of a piezo actuator

- Piezo actuator needs to be driven at its resonance frequency (~40kHz)
- Adjust frequency to achieve 0° phase difference between voltage and current

Frequency domain behavior of a piezo actuator

Phase-locked loop is used to control piezo frequency

Challenges

- Uncertainty in piezo actuator behavior
 - Product variations

Short development time

- Interaction with tissue
- Desired behavior for optimal cutting

Need for testing using actual actuator on tissue!

- Reliable PLL stability / locking
- More complicated control & signal processing
- High loop frequency

Use case: precision cut surgical instrument high-level model

From reference implementation to FPGA: fixed point

- High-level (golden reference) model designed by Mechatronic System Engineer
- Fixed-point conversion
- 'Sine Wave Function' blocks replaced by 'Sine and Cosine HDL Optimized' blocks
- Trigonometric block <atan2> replaced by CORDIC-based four quadrant inverse tangent Matlab function
- Target low-cost Xilinx Artix-7 FPGA (no SoC required)

Model-based design verification: FPGA model vs reference

HDL Coder Workflow

- fixed-point conversion
- floating-point support
- discrete-time
- HDL supported blocks
- oversampling factor
- workflow advisors

HDL Coder timing analysis, critical path

- Very useful feature to find computational bottle-necks
- In our case: sine & cosine computation

HDL Coder Pipelining

HDL Coder Resource Sharing

From reference implementation to FPGA: floating point

- For the final implementation: use of floating point
- Model synthesizable within few days
- Only minor adaptions required: single precision datatypes and non-HDL blocks replaced
- IEEE (native) floating point support for all trigonometric & math blocks (sin, cos, sincos, atan, atan2)

	Fixed point	Floating point	
LUTs	10k	25k	
DSP slices	50	100	~2x more resources ~5x less development effort
Development time	~1 week	~1 day	

Achievements

- Early prototype with limited development effort
- Energy-efficient piezo actuator
- Cost-efficient by incorporating controller in the existing FPGA
- Reliable PLL operation
- Fast iterations using HDL coder

Conclusions

- Less chances of coding errors due to high-level implementation
- Improves collaboration between FPGA engineers and other disciplines (system engineers)
- Resource sharing & pipelining optimizations are much easier as compared to bare VHDL coding
 - Only setting appropriate numbers / check boxes instead of re-implementing
- Native floating point support speeds up transition from high-level model to implementation
 - No / less need to worry about data types
 - Good support of a.o. trigonometric functions
 - Same model for 'high level' simulations and for FPGA code generation
- \rightarrow Current project status: alpha-phase hardware validation

